Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom
HTML articles powered by AMS MathViewer
- by
B. I. Suleimanov
Translated by: T. Sulimov - St. Petersburg Math. J. 33 (2022), 995-1009
- DOI: https://doi.org/10.1090/spmj/1739
- Published electronically: October 31, 2022
- PDF | Request permission
Abstract:
For the three nonstationary Schrödinger equations \begin{equation*} i\hbar \Psi _{\tau }=H(x,y,-i\hbar \frac {\partial }{\partial x},-i\hbar \frac {\partial }{\partial y})\Psi , \end{equation*} solutions are constructed that correspond to conservative Hamiltonian systems with two degrees of freedom whose general solutions can be represented by those of the second Painlevé equation. These solutions of the Schrödinger equations are expressed via fundamental solutions of systems of linear equations arising in the isomonodromic deformations method, the compatibility condition of which is the second Painlevé equation. The constructed solutions of two nonstationary Schrödinger equations are globally smooth. Some of the smooth solutions in question of one of these two equations exponentially tend to zero as $x^2+y^2\to \infty$ if the corresponding solutions of linear systems that are used in the method of isomonodromic deformations are compatible on the so-called 1-tronquée solutions of the second Painlevé equation.References
- Alex Bloemendal and Bálint Virág, Limits of spiked random matrices I, Probab. Theory Related Fields 156 (2013), no. 3-4, 795–825. MR 3078286, DOI 10.1007/s00440-012-0443-2
- Alex Bloemendal and Bálint Virág, Limits of spiked random matrices II, Ann. Probab. 44 (2016), no. 4, 2726–2769. MR 3531679, DOI 10.1214/15-AOP1033
- P. Boutroux, Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre, Ann. Sci. École Norm. Sup. (3) 30 (1913), 255–375 (French). MR 1509163, DOI 10.24033/asens.661
- P. Boutroux, Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre (suite), Ann. Sci. École Norm. Sup. (3) 31 (1914), 99–159 (French). MR 1509174, DOI 10.24033/asens.672
- Robert Conte, Generalized Bonnet surfaces and Lax pairs of $\rm {P_{VI}}$, J. Math. Phys. 58 (2017), no. 10, 103508, 31. MR 3717543, DOI 10.1063/1.4995689
- Robert Conte and Ivan Dornic, The master Painlevé VI heat equation, C. R. Math. Acad. Sci. Paris 352 (2014), no. 10, 803–806 (English, with English and French summaries). MR 3262911, DOI 10.1016/j.crma.2014.08.006
- Hermann Flaschka and Alan C. Newell, Monodromy- and spectrum-preserving deformations. I, Comm. Math. Phys. 76 (1980), no. 1, 65–116. MR 588248, DOI 10.1007/BF01197110
- R. Garnier, Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Ann. Sci. École Norm. Sup. (3) 29 (1912), 1–126 (French). MR 1509146, DOI 10.24033/asens.644
- Tamara Grava, Alexander Its, Andrei Kapaev, and Francesco Mezzadri, On the Tracy-Widom$_\beta$ distribution for $\beta =6$, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 105, 26. MR 3566924, DOI 10.3842/SIGMA.2016.105
- A. M. Grundland and D. Riglioni, Classical-quantum correspondence for shape-invariant systems, J. Phys. A 48 (2015), no. 24, 245201, 15. MR 3355248, DOI 10.1088/1751-8113/48/24/245201
- Alexander R. Its and Victor Yu. Novokshenov, The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Mathematics, vol. 1191, Springer-Verlag, Berlin, 1986. MR 851569, DOI 10.1007/BFb0076661
- A. Levin, M. Olshanetsky, and A. Zotov, Planck constant as spectral parameter in integrable systems and KZB equations, J. High Energy Phys. 10 (2014), 109, front matter+28. MR 3324815, DOI 10.1007/JHEP10(2014)109
- Peter D. Miller, On the increasing tritronquée solutions of the Painlevé-II equation, SIGMA Symmetry Integrability Geom. Methods Appl. 14 (2018), Paper No. 125, 38. MR 3876873, DOI 10.3842/SIGMA.2018.125
- H. Nagoya, Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations, J. Math. Phys. 52 (2011), no. 8, 083509, 16. MR 2858065, DOI 10.1063/1.3620412
- Hajime Nagoya and Yasuhiko Yamada, Symmetries of quantum Lax equations for the Painlevé equations, Ann. Henri Poincaré 15 (2014), no. 2, 313–344. MR 3159983, DOI 10.1007/s00023-013-0237-9
- D. P. Novikov, A monodromy problem and some functions connected with Painlevé 6, Proc. Inter. Conf. Painleve Equations and Related Topics, Euler Internat. Math. Inst., St.-Petersburg, 2011, pp. 118–121.
- H. Rosengren, Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation, arXiv:1312.5879, (2013).
- Hjalmar Rosengren, Special polynomials related to the supersymmetric eight-vertex model: a summary, Comm. Math. Phys. 340 (2015), no. 3, 1143–1170. MR 3406643, DOI 10.1007/s00220-015-2439-0
- Igor Rumanov, Hard edge for $\beta$-ensembles and Painlevé III, Int. Math. Res. Not. IMRN 23 (2014), 6576–6617. MR 3286348, DOI 10.1093/imrn/rnt170
- Igor Rumanov, Classical integrability for beta-ensembles and general Fokker-Planck equations, J. Math. Phys. 56 (2015), no. 1, 013508, 16. MR 3390847, DOI 10.1063/1.4906067
- Igor Rumanov, Beta ensembles, quantum Painlevé equations and isomonodromy systems, Algebraic and analytic aspects of integrable systems and Painlevé equations, Contemp. Math., vol. 651, Amer. Math. Soc., Providence, RI, 2015, pp. 125–155. MR 3441746, DOI 10.1090/conm/651/13036
- Igor Rumanov, Painlevé representation of Tracy-Widom$_\beta$ distribution for $\beta =6$, Comm. Math. Phys. 342 (2016), no. 3, 843–868. MR 3465433, DOI 10.1007/s00220-015-2487-5
- A. Zabrodin and A. Zotov, Quantum Painlevé-Calogero correspondence, J. Math. Phys. 53 (2012), no. 7, 073507, 19. MR 2985247, DOI 10.1063/1.4732532
- A. Zabrodin and A. Zotov, Classical-quantum correspondence and functional relations for Painlevé equations, Constr. Approx. 41 (2015), no. 3, 385–423. MR 3346715, DOI 10.1007/s00365-015-9284-4
- Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0203188
- A. V. Zotov and A. V. Smirnov, Modifications of bundles, elliptic integrable systems, and related problems, Theoret. and Math. Phys. 177 (2013), no. 1, 1281–1338. Translation of Teoret. Mat. Fiz. 177 (2013), no. 1, 3–67. MR 3230749, DOI 10.1007/s11232-013-0106-1
- Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov, Painlevé transcendents, Mathematical Surveys and Monographs, vol. 128, American Mathematical Society, Providence, RI, 2006. The Riemann-Hilbert approach. MR 2264522, DOI 10.1090/surv/128
- A. V. Kitaev, Turning points of linear systems, and double asymptotics of Painlevé transcendents, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 187 (1991), no. Differentsial′naya Geom. Gruppy Li i Mekh. 12, 53–74, 172, 174–175 (Russian, with English summary); English transl., J. Math. Sci. 73 (1995), no. 4, 446–459. MR 1111904, DOI 10.1007/BF02364567
- A. M. Levin, M. A. Ol′shanetskiĭ, and A. V. Zotov, Classification of isomonodromy problems on elliptic curves, Uspekhi Mat. Nauk 69 (2014), no. 1(415), 39–124 (Russian, with Russian summary); English transl., Russian Math. Surveys 69 (2014), no. 1, 35–118. MR 3222878, DOI 10.1070/rm2014v069n01abeh004878
- Albert Messiah, Quantum mechanics. Vol. I, North-Holland Publishing Co., Amsterdam; Interscience Publishers Inc., New York, 1961. Translated from the French by G. M. Temmer. MR 0129790
- D. P. Novikov, The Schlesinger system with $2\times 2$ matrices and the Belavin-Polyakov-Zamolodchikov equation, Teoret. Mat. Fiz. 161 (2009), no. 2, 191–203 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 161 (2009), no. 2, 1485–1496. MR 2667345, DOI 10.1007/s11232-009-0135-y
- D. P. Novikov, R. K. Romanovsky, and S. G. Sadovnichuk, Some new methods of finite-gap integration of soliton equations, Nauka, Novosibirsk, 2013. (Russian).
- D. P. Novikov and B. I. Suleĭmanov, “Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom, Teoret. Mat. Fiz. 187 (2016), no. 1, 39–57 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 187 (2016), no. 1, 479–496. MR 3507522, DOI 10.4213/tmf8950
- V. Yu. Novokshenov, Tronquée solutions of the Painlevé II equation, Theoret. and Math. Phys. 172 (2012), no. 2, 1136–1146. Russian version appears in Teoret. Mat. Fiz. 172 (2012), no. 2, 296–307. MR 3170087, DOI 10.1007/s11232-012-0102-x
- V. Yu. Novokshenov, Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold, Proc. Steklov Inst. Math. 281 (2013), no. suppl. 1, S105–S117. MR 3476464, DOI 10.1134/S0081543813050106
- V. A. Pavlenko and B. I. Suleimanov, “Quantizations” of isomonodromic Hamilton system $H^{\frac 72+1}$, Ufa Math. J. 9 (2017), no. 4, 97–107. MR 3738912, DOI 10.13108/2017-9-4-97
- V. A. Pavlenko and B. I. Suleimanov, Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$, Ufa Math. J. 10 (2018), no. 4, 92–102. MR 3905912, DOI 10.3390/sym10040092
- V. A. Pavlenko and B. I. Suleimanov, Explicit solutions to analogues of non-stationary Schrödinger equations with Hamilton system $H^{4+1}$, Izv. RAN Ser. Fiz. 84 (2020), no. 5, 695–698. (Russian)
- B. I. Suleĭmanov, The Hamiltonian structure of Painlevé equations and the method of isomonodromic deformations, Asymptotic properties of solutions of differential equations (Russian), Akad. Nauk SSSR Ural. Otdel., Bashkir. Nauchn. Tsentr, Ufa, 1988, pp. 93–102 (Russian). MR 1221096
- B. I. Suleĭmanov, The Hamilton property of Painlevé equations and the method of isomonodromic deformations, Differentsial′nye Uravneniya 30 (1994), no. 5, 791–796, 917 (Russian, with Russian summary); English transl., Differential Equations 30 (1994), no. 5, 726–732. MR 1306348
- B. I. Suleĭmanov, “Quantizations” of the second Painlevé equation and the problem of the equivalence of its $L$-$A$ pairs, Teoret. Mat. Fiz. 156 (2008), no. 3, 364–377 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 156 (2008), no. 3, 1280–1291. MR 2490262, DOI 10.1007/s11232-008-0106-8
- B. I. Suleĭmanov, “Quantizations” of higher Hamiltonian analogues of the Painlevé I and II equations with two degrees of freedom, Funktsional. Anal. i Prilozhen. 48 (2014), no. 3, 52–62 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 48 (2014), no. 3, 198–207. MR 3494720, DOI 10.1007/s10688-014-0061-0
- B. I. Suleimanov, Quantization of some autonomous reduction of Painlevé equations and the old quantum theory, Book of abstracts of Internat. conf. dedicated to the memory of I.G. Petrovskii, Moscow, 2011, pp. 356–357. (Russian).
- B. I. Suleimanov, “Quantum” linearization of Painlevé equations as a component of their $L,A$ pairs, Ufa Math. J. 4 (2012), no. 2, 127–136. MR 3432649
- B. I. Suleĭmanov, Quantum aspects of the integrability of the third Painlevé equation and a time-dependent Schrödinger equation with Morse potential, Ufa Math. J. 8 (2016), no. 3, 141–159 (Russian, with Russian summary). MR 3568880, DOI 10.13108/2016-8-3-136
- B. I. Suleĭmanov, The second Painlevé equation in a problem on nonlinear effects near caustics, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 187 (1991), no. Differentsial′naya Geom. Gruppy Li i Mekh. 12, 110–128, 173, 175 (Russian, with English summary); English transl., J. Math. Sci. 73 (1995), no. 4, 482–493. MR 1111907, DOI 10.1007/BF02364570
Bibliographic Information
- B. I. Suleimanov
- Affiliation: Institute of Mathematics with Computer Science Center of UFRTs, RAS, ul. Chernyshevskogo 112, Ufa, Russia
- Email: bisul@mail.ru
- Received by editor(s): August 31, 2020
- Published electronically: October 31, 2022
- © Copyright 2022 American Mathematical Society
- Journal: St. Petersburg Math. J. 33 (2022), 995-1009
- MSC (2020): Primary 37J65
- DOI: https://doi.org/10.1090/spmj/1739