An effective algorithm for deciding the solvability of a system of polynomial equations over $p$-adic integers
HTML articles powered by AMS MathViewer
- by
A. L. Chistov
Translated by: the author - St. Petersburg Math. J. 33 (2022), 1011-1033
- DOI: https://doi.org/10.1090/spmj/1740
- Published electronically: October 31, 2022
- PDF | Request permission
Abstract:
Consider a system of polynomial equations in $n$ variables of degrees at most $d$ with integer coefficients whose lengths are at most $M$. By using a construction close to smooth stratification of algebraic varieties, it is shown that one can construct a positive integer \begin{equation*} \Delta < 2^{M(nd)^{c\, 2^n n^3}} \end{equation*} (here $c>0$ is a constant) depending on these polynomials and having the following property. For every prime $p$ the system under study has a solution in the ring of $p$-adic numbers if and only if it has a solution modulo $p^N$ for the least integer $N$ such that $p^N$ does not divide $\Delta$. This improves the previously known, at present classical result by B. J. Birch and K. McCann.References
- A. L. Chistov, An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 137 (1984), 124–188 (Russian, with English summary). Theory of the complexity of computations, II. MR 762101
- A. L. Chistov, Efficient smooth stratification of an algebraic variety of characteristic zero and its applications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 266 (2000), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 5, 254–311, 340–341 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 113 (2003), no. 5, 689–717. MR 1774658, DOI 10.1023/A:1021114713990
- A. L. Chistov, An improvement of the complexity bound for solving systems of polynomial equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 390 (2011), no. Teoriya PredstavleniÄ, Dinamicheskie Sistemy, Kombinatornye Metody. XX, 299–306, 311 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 181 (2012), no. 6, 921–924. MR 2870239, DOI 10.1007/s10958-012-0724-4
- A. L. Chistov, Systems with parameters, or the efficient solution of systems of polynomial equations 33 years later. I, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 462 (2017), no. Teoriya PredstavleniÄ, Dinamicheskie Sistemy, Kombinatornye Metody. XXVIII, 122–166 (Russian, with English summary); English transl., J. Math. Sci. (N.Y.) 232 (2018), no. 2, 177–203. MR 3743411, DOI 10.1007/s10958-018-3868-z
- A. L. Chistov, Systems with parameters, or the efficient solution of systems of polynomial equations 33 years later. II, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 468 (2018), no. Teoriya PredstavleniÄ, Dinamicheskie Sistemy, Kombinatornye Metody. XXIX, 138–176 (Russian, with English summary); English transl., J. Math. Sci. (N.Y.) 240 (2019), no. 5, 594–616. MR 3869025
- A. O. Gel′fond, Transcendental and algebraic numbers, Dover Publications, Inc., New York, 1960. Translated from the first Russian edition by Leo F. Boron. MR 0111736
- W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. II. Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties, Cambridge, at the University Press, 1952. MR 0048065
- B. J. Birch and K. McCann, A criterion for the $p$-adic solubility of diophantine equations, Quart. J. Math. Oxford Ser. (2) 18 (1967), 59–63. MR 207636, DOI 10.1093/qmath/18.1.59
- A. Chistov and M. Karpinski, Complexity of deciding solvability of polynomial equations over p-adic integers, Res. Rep. Inst. Inform. Univ. Bonn, Bonn, 1997, 85183-CS.
- János Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc. 1 (1988), no. 4, 963–975. MR 944576, DOI 10.1090/S0894-0347-1988-0944576-7
- Daniel Lazard, Résolution des systèmes d’équations algébriques, Theoret. Comput. Sci. 15 (1981), no. 1, 77–110 (French, with English summary). MR 619687, DOI 10.1016/0304-3975(81)90064-5
Bibliographic Information
- A. L. Chistov
- Affiliation: St. Petersburg Department of Steklov Mathematical Institute of the Academy of Sciences of Russia, Fontanka 27, St. Petersburg 191023, Russia
- Email: alch@pdmi.ras.ru
- Received by editor(s): July 22, 2021
- Published electronically: October 31, 2022
- © Copyright 2022 American Mathematical Society
- Journal: St. Petersburg Math. J. 33 (2022), 1011-1033
- MSC (2020): Primary 12L05
- DOI: https://doi.org/10.1090/spmj/1740