Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the local finite separability of finitely generated associative rings
HTML articles powered by AMS MathViewer

by S. I. Kublanovskii;
Translated by: S. V. Kislyakov
St. Petersburg Math. J. 34 (2023), 205-220
DOI: https://doi.org/10.1090/spmj/1751
Published electronically: March 22, 2023

Abstract:

It is proved that analogs of the theorems of M. Hall and N. S. Romanovskii are not true in the class of commutative rings. Necessary and sufficient conditions for the local finite separability of monogenic rings are established. As a corollary, it is proved that a finitely generated torsion-free PI-ring is locally finitely separable if and only if its additive group is finitely generated.
References
  • A. I. Mal′tsev, On homomorphisms onto finite groups , Uchen. Zap. Ivanovsk. Ped. Inst. 18 (1958), 49–60. (Russian)
  • Marshall Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421–432. MR 32642, DOI 10.1090/S0002-9947-1949-0032642-4
  • R. B. J. T. Allenby and R. J. Gregorac, On locally extended residually finite groups, Conference on Group Theory (Univ. Wisconsin-Parkside, Kenosha, Wis., 1972) Lecture Notes in Math., Vol. 319, Springer, Berlin-New York, 1973, pp. 9–17. MR 382450
  • N. S. Romanovskiĭ, On the residual finiteness of free products with respect to subgroups, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1324–1329 (Russian). MR 257234
  • S. I. Kublanovskii, On finite separability of finitely generated associative rings. (in print)
  • I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, No. 15, Mathematical Association of America; distributed by John Wiley & Sons, New York, 1968. MR 227205
  • S. I. Kublanovskiĭ, On varieties of associative algebras with local finiteness conditions, Algebra i Analiz 9 (1997), no. 4, 119–174 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 9 (1998), no. 4, 763–813. MR 1604008
  • Morris Orzech and Luis Ribes, Residual finiteness and the Hopf property in rings, J. Algebra 15 (1970), 81–88. MR 255587, DOI 10.1016/0021-8693(70)90087-6
  • N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule XI. Livre II: Algèbre. Chapitre 4: Polynomes et fractions rationnelles. Chapitre 5: Corps commutatifs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1102, Hermann, Paris, 1959 (French). Deuxième édition. MR 174550
  • A. I. Širšov, On rings with identity relations, Mat. Sb. (N.S.) 43(85) (1957), 277–283 (Russian). MR 95192
  • Charles C. Lindner and Trevor Evans, Finite embedding theorems for partial designs and algebras, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], No. 56 (Été 1971), Les Presses de l’Université de Montréal, Montreal, QC, 1977. MR 460213
Similar Articles
Bibliographic Information
  • S. I. Kublanovskii
  • Affiliation: TPO “Severnyi Ochag”, St. Petersburg, Russia
  • Email: stas1107@mail.ru
  • Received by editor(s): August 9, 2021
  • Published electronically: March 22, 2023
  • © Copyright 2023 American Mathematical Society
  • Journal: St. Petersburg Math. J. 34 (2023), 205-220
  • MSC (2020): Primary 16R10; Secondary 08B05, 16R40, 16S15
  • DOI: https://doi.org/10.1090/spmj/1751