Hilbert points in Hardy spaces
HTML articles powered by AMS MathViewer
- by O. F. Brevig, J. Ortega-Cerdà and K. Seip;
- St. Petersburg Math. J. 34 (2023), 405-425
- DOI: https://doi.org/10.1090/spmj/1760
- Published electronically: June 7, 2023
- PDF | Request permission
Abstract:
A Hilbert point in $H^p(\mathbb {T}^d)$, for $d\geq 1$ and $1\leq p \leq \infty$, is a nontrivial function $\varphi$ in $H^p(\mathbb {T}^d)$ such that $\| \varphi \|_{H^p(\mathbb {T}^d)} \leq \|\varphi + f\|_{H^p(\mathbb {T}^d)}$ whenever $f$ is in $H^p(\mathbb {T}^d)$ and orthogonal to $\varphi$ in the usual $L^2$ sense. When $p\neq 2$, $\varphi$ is a Hilbert point in $H^p(\mathbb {T})$ if and only if $\varphi$ is a nonzero multiple of an inner function. An inner function on $\mathbb {T}^d$ is a Hilbert point in any of the spaces $H^p(\mathbb {T}^d)$, but there are other Hilbert points as well when $d\geq 2$. The case of $1$-homogeneous polynomials is studied in depth and, as a byproduct, a new proof is given for the sharp Khinchin inequality for Steinhaus variables in the range $2<p<\infty$. Briefly, the dynamics of a certain nonlinear projection operator is treated. This operator characterizes Hilbert points as its fixed points. An example is exhibited of a function $\varphi$ that is a Hilbert point in $H^p(\mathbb {T}^3)$ for $p=2, 4$, but not for any other $p$; this is verified rigorously for $p>4$ but only numerically for $1\leq p<4$.References
- The on-line encyclopedia of integer sequences, OEIS Foundation Inc., 2021, https://oeis.org/A130046.
- Albert Baernstein II and Robert C. Culverhouse, Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions, Studia Math. 152 (2002), no. 3, 231–248. MR 1916226, DOI 10.4064/sm152-3-3
- Arne Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239–255. MR 27954, DOI 10.1007/BF02395019
- Ole Fredrik Brevig, Linear functions and duality on the infinite polytorus, Collect. Math. 70 (2019), no. 3, 493–500. MR 3990995, DOI 10.1007/s13348-019-00243-8
- Ole Fredrik Brevig, Joaquim Ortega-Cerdà, and Kristian Seip, Idempotent Fourier multipliers acting contractively on $H^p$ spaces, Geom. Funct. Anal. 31 (2021), no. 6, 1377–1413. MR 4386412, DOI 10.1007/s00039-021-00586-0
- Hermann König, On the best constants in the Khintchine inequality for Steinhaus variables, Israel J. Math. 203 (2014), no. 1, 23–57. MR 3273431, DOI 10.1007/s11856-013-0006-y
- H. König and S. Kwapień, Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors, Positivity 5 (2001), no. 2, 115–152. MR 1825172, DOI 10.1023/A:1011434208929
- Florence Lancien, Beata Randrianantoanina, and Eric Ricard, On contractive projections in Hardy spaces, Studia Math. 171 (2005), no. 1, 93–102. MR 2182273, DOI 10.4064/sm171-1-5
- Nikolaï Nikolski, Hardy spaces, Translated from the 2012 French edition, Cambridge Studies in Advanced Mathematics, vol. 179, Cambridge University Press, Cambridge, 2019. MR 3890074, DOI 10.1017/9781316882108
- N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 255841
- Jerzy Sawa, The best constant in the Khintchine inequality for complex Steinhaus variables, the case $p=1$, Studia Math. 81 (1985), no. 1, 107–126. MR 818175, DOI 10.4064/sm-81-1-107-126
- Harold S. Shapiro, Topics in approximation theory, Lecture Notes in Mathematics, Vol. 187, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg. MR 437981, DOI 10.1007/BFb0058976
Bibliographic Information
- O. F. Brevig
- Affiliation: Department of Mathematics, University of Oslo, 0851 Oslo, Norway
- MR Author ID: 1069722
- Email: obrevig@math.uio.no
- J. Ortega-Cerdà
- Affiliation: Department de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
- ORCID: 0000-0002-6616-4257
- Email: jortega@ub.edu
- K. Seip
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- MR Author ID: 158300
- Email: kristian.seip@ntnu.no
- Received by editor(s): June 21, 2021
- Published electronically: June 7, 2023
- Additional Notes: Ortega-Cerdà was partially supported by the Generalitat de Catalunya (grant 2017 SGR 358) and the Spanish Ministerio de Ciencia, Innovación y Universidades (project MTM2017-83499-P). Seip was supported in part by the Research Council of Norway grant 275113
- © Copyright 2023 American Mathematical Society
- Journal: St. Petersburg Math. J. 34 (2023), 405-425
- MSC (2020): Primary 30H10; Secondary 42B30, 60E15
- DOI: https://doi.org/10.1090/spmj/1760
- MathSciNet review: 4608510
Dedicated: Dedicated, with admiration, to Nikolai Nikolski on the occasion of his $80$th birthday