Functions with small and large spectra as (non)extreme points in subspaces of $H^\infty$
HTML articles powered by AMS MathViewer
- by K. M. Dyakonov;
- St. Petersburg Math. J. 34 (2023), 453-462
- DOI: https://doi.org/10.1090/spmj/1763
- Published electronically: June 7, 2023
- HTML | PDF | Request permission
Abstract:
Given a subset $\Lambda$ of $\mathbb Z_+≔\{0,1,2,\dots \}$, let $H^\infty (\Lambda )$ denote the space of bounded analytic functions $f$ on the unit disk whose coefficients $\widehat f(k)$ vanish for $k\notin \Lambda$. Assuming that either $\Lambda$ or $\mathbb Z_+\setminus \Lambda$ is finite, we determine the extreme points of the unit ball in $H^\infty (\Lambda )$.References
- Éric Amar and Aline Lederer, Points exposés de la boule unité de $H^{\infty }(D)$, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1449–A1452 (French). MR 283557
- Sheldon Axler, Linear algebra done right, 3rd ed., Undergraduate Texts in Mathematics, Springer, Cham, 2015. MR 3308468, DOI 10.1007/978-3-319-11080-6
- Karel de Leeuw and Walter Rudin, Extreme points and extremum problems in $H_{1}$, Pacific J. Math. 8 (1958), 467–485. MR 98981, DOI 10.2140/pjm.1958.8.467
- Konstantin M. Dyakonov, Interpolating functions of minimal norm, star-invariant subspaces and kernels of Toeplitz operators, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1007–1013. MR 1100649, DOI 10.1090/S0002-9939-1992-1100649-2
- Konstantin M. Dyakonov, Polynomials and entire functions: zeros and geometry of the unit ball, Math. Res. Lett. 7 (2000), no. 4, 393–404. MR 1783617, DOI 10.4310/MRL.2000.v7.n4.a5
- Konstantin M. Dyakonov, Extreme points in spaces of polynomials, Math. Res. Lett. 10 (2003), no. 5-6, 717–728. MR 2024728, DOI 10.4310/MRL.2003.v10.n5.a14
- Konstantin M. Dyakonov, Two problems on coinvariant subspaces of the shift operator, Integral Equations Operator Theory 78 (2014), no. 2, 151–154. MR 3157976, DOI 10.1007/s00020-013-2110-0
- Konstantin M. Dyakonov, Lacunary polynomials in $L^1$: geometry of the unit sphere, Adv. Math. 381 (2021), Paper No. 107607, 24. MR 4205713, DOI 10.1016/j.aim.2021.107607
- Konstantin M. Dyakonov, A Rudin–de Leeuw type theorem for functions with spectral gaps, C. R. Math. Acad. Sci. Paris 359 (2021), 797–803. MR 4311805, DOI 10.5802/crmath.208
- Konstantin M. Dyakonov, Nearly outer functions as extreme points in punctured Hardy spaces, Adv. Math. 401 (2022), Paper No. 108330, 22. MR 4394687, DOI 10.1016/j.aim.2022.108330
- John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007. MR 2261424
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962. MR 133008
- Paul Koosis, Introduction to $H_p$ spaces, 2nd ed., Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge, 1998. With two appendices by V. P. Havin [Viktor Petrovich Khavin]. MR 1669574
- Stefan Neuwirth, The maximum modulus of a trigonometric trinomial, J. Anal. Math. 104 (2008), 371–396. MR 2403441, DOI 10.1007/s11854-008-0028-2
Bibliographic Information
- K. M. Dyakonov
- Affiliation: Departament de Matemàtiques i Informàtica, IMUB, BGSMath, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona; ICREA, Pg. Lluís Companys 23, E-08010 Barcelona, Spain
- Email: konstantin.dyakonov@icrea.cat
- Received by editor(s): October 12, 2021
- Published electronically: June 7, 2023
- Additional Notes: Supported in part by grant PID2021-123405NB-I00 from El Ministerio de Ciencia e Innovación (Spain) and grant 2021-SGR-00087 from AGAUR (Generalitat de Catalunya).
- © Copyright 2023 American Mathematical Society
- Journal: St. Petersburg Math. J. 34 (2023), 453-462
- MSC (2020): Primary 30C10; Secondary 30H10, 42A05, 46A55
- DOI: https://doi.org/10.1090/spmj/1763
Dedicated: Dedicated to Nikolai Kapitonovich Nikolski on the occasion of his $80$th birthday