Spectral asymptotics for a family of LCM matrices
HTML articles powered by AMS MathViewer
- by T. Hilberdink and A. Pushnitski;
- St. Petersburg Math. J. 34 (2023), 463-481
- DOI: https://doi.org/10.1090/spmj/1764
- Published electronically: June 7, 2023
- HTML | PDF | Request permission
Abstract:
The family of arithmetical matrices is studied given explicitly by \begin{equation*} E(\sigma ,\tau )= \bigg \{\frac {n^\sigma m^\sigma }{[n,m]^\tau }\bigg \}_{n,m=1}^\infty , \end{equation*} where $[n,m]$ is the least common multiple of $n$ and $m$ and the real parameters $\sigma$ and $\tau$ satisfy $\rho ≔\tau -2\sigma >0$, $\tau -\sigma >\frac 12$, and $\tau >0$. It is proved that $E(\sigma ,\tau )$ is a compact selfadjoint positive definite operator on $\ell ^2(\mathbb {N})$, and the ordered sequence of eigenvalues of $E(\sigma ,\tau )$ obeys the asymptotic relation \begin{equation*} \lambda _n(E(\sigma ,\tau ))=\frac {\varkappa (\sigma ,\tau )}{n^\rho }+o(n^{-\rho }), \quad n\to \infty , \end{equation*} with some $\varkappa (\sigma ,\tau )>0$. This fact is applied to the asymptotics of singular values of truncated multiplicative Toeplitz matrices with the symbol given by the Riemann zeta function on the vertical line with abscissa $\sigma <1/2$. The relationship of the spectral analysis of $E(\sigma ,\tau )$ with the theory of generalized prime systems is also pointed out.References
- Christoph Aistleitner, Lower bounds for the maximum of the Riemann zeta function along vertical lines, Math. Ann. 365 (2016), no. 1-2, 473–496. MR 3498919, DOI 10.1007/s00208-015-1290-0
- Michel Balazard, La version de Diamond de la méthode de l’hyperbole de Dirichlet, Enseign. Math. (2) 45 (1999), no. 3-4, 253–270 (French). MR 1742330
- Erik Bédos, On Følner nets, Szegő’s theorem and other eigenvalue distribution theorems, Exposition. Math. 15 (1997), no. 3, 193–228. MR 1458766
- J. M. Bogoya, A. Böttcher, and S. M. Grudsky, Eigenvalues of Hermitian Toeplitz matrices with polynomially increasing entries, J. Spectr. Theory 2 (2012), no. 3, 267–292. MR 2947288, DOI 10.4171/jst/29
- Andriy Bondarenko and Kristian Seip, Large greatest common divisor sums and extreme values of the Riemann zeta function, Duke Math. J. 166 (2017), no. 9, 1685–1701. MR 3662441, DOI 10.1215/00127094-0000005X
- Keith Bourque and Steve Ligh, Matrices associated with arithmetical functions, Linear and Multilinear Algebra 34 (1993), no. 3-4, 261–267. MR 1304611, DOI 10.1080/03081089308818225
- Albrecht Böttcher, Schatten norms of Toeplitz matrices with Fisher-Hartwig singularities, Electron. J. Linear Algebra 15 (2006), 251–259. MR 2255478, DOI 10.13001/1081-3810.1235
- Albrecht Böttcher and Jani Virtanen, Norms of Toeplitz matrices with Fisher-Hartwig symbols, SIAM J. Matrix Anal. Appl. 29 (2007), no. 2, 660–671. MR 2318370, DOI 10.1137/06066165X
- Harold G. Diamond and Wen-Bin Zhang, Beurling generalized numbers, Mathematical Surveys and Monographs, vol. 213, American Mathematical Society, Providence, RI, 2016. MR 3559358, DOI 10.1090/surv/213
- Pentti Haukkanen, An upper bound for the $l_p$ norm of a GCD-related matrix, J. Inequal. Appl. , posted on (2006), Art. ID 25020, 6. MR 2215475, DOI 10.1155/JIA/2006/25020
- Håkan Hedenmalm, Peter Lindqvist, and Kristian Seip, A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$, Duke Math. J. 86 (1997), no. 1, 1–37. MR 1427844, DOI 10.1215/S0012-7094-97-08601-4
- Titus Hilberdink, An arithmetical mapping and applications to $\Omega$-results for the Riemann zeta function, Acta Arith. 139 (2009), no. 4, 341–367. MR 2545934, DOI 10.4064/aa139-4-3
- Titus Hilberdink, Singular values of multiplicative Toeplitz matrices, Linear Multilinear Algebra 65 (2017), no. 4, 813–829. MR 3606835, DOI 10.1080/03081087.2016.1204978
- Titus Hilberdink, Matrices with multiplicative entries are tensor products, Linear Algebra Appl. 532 (2017), 179–197. MR 3688636, DOI 10.1016/j.laa.2017.06.037
- Shaofang Hong and Raphael Loewy, Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasg. Math. J. 46 (2004), no. 3, 551–569. MR 2094810, DOI 10.1017/S0017089504001995
- Shaofang Hong and K. S. Enoch Lee, Asymptotic behavior of eigenvalues of reciprocal power LCM matrices, Glasg. Math. J. 50 (2008), no. 1, 163–174. MR 2381740, DOI 10.1017/S0017089507003953
- J. Korevaar, A century of complex Tauberian theory, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 4, 475–531. MR 1920279, DOI 10.1090/S0273-0979-02-00951-5
- Peter Lindqvist and Kristian Seip, Note on some greatest common divisor matrices, Acta Arith. 84 (1998), no. 2, 149–154. MR 1614259, DOI 10.4064/aa-84-2-149-154
- Mika Mattila and Pentti Haukkanen, On the eigenvalues of certain number-theoretic matrices, East-West J. Math. 14 (2012), no. 2, 121–130. MR 3076473
- Nikolaï Nikolski, Toeplitz matrices and operators, Cambridge Studies in Advanced Mathematics, vol. 182, Cambridge University Press, Cambridge, 2020. Translated from the French edition by Danièle Gibbons and Greg Gibbons. MR 4319036, DOI 10.1017/9781108182577
- N. Nikolski and A. Pushnitski, Szegő-type limit theorems for “multiplicative Toeplitz” operators and non-Følner approximations, Algebra i Analiz 32 (2020), no. 6, 101–123; English transl., St. Petersburg Math. J. 32 (2021), no. 6, 1033–1050. MR 4219493, DOI 10.1090/spmj/1683
- Nikolai Nikolski, In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 5, 1601–1626 (English, with English and French summaries). MR 3025149, DOI 10.5802/aif.2731
- Henry J. Stephen Smith, On the Value of a Certain Arithmetical Determinant, Proc. Lond. Math. Soc. 7 (1875/76), 208–212. MR 1575630, DOI 10.1112/plms/s1-7.1.208
- Otto Toeplitz, Zur Theorie der Dirichletschen Reihen, Amer. J. Math. 60 (1938), no. 4, 880–888 (German). MR 1507354, DOI 10.2307/2371266
- Aurel Wintner, Diophantine approximations and Hilbert’s space, Amer. J. Math. 66 (1944), 564–578. MR 11497, DOI 10.2307/2371766
Bibliographic Information
- T. Hilberdink
- Affiliation: Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading, RG6 6AX, United Kingdom
- MR Author ID: 603983
- Email: t.w.hilberdink@reading.ac.uk
- A. Pushnitski
- Affiliation: Department of Mathematics, King’s College London, Strand, London, WC2R 2LS, United Kingdom
- Email: alexander.pushnitski@kcl.ac.uk
- Received by editor(s): October 25, 2021
- Published electronically: June 7, 2023
- Additional Notes: The second author was supported by the Ministry of Science and Higher Education of the Russian Federation, contract no. 075-15-2019-1619.
- © Copyright 2023 American Mathematical Society
- Journal: St. Petersburg Math. J. 34 (2023), 463-481
- MSC (2020): Primary 47B35; Secondary 11C20
- DOI: https://doi.org/10.1090/spmj/1764
Dedicated: To Nikolai Nikolski on the occasion of his $80$th birthday with warmest wishes