Free boundary problems via Sakai’s theorem
HTML articles powered by AMS MathViewer
- by D. Vardakis and A. Volberg;
- St. Petersburg Math. J. 34 (2023), 497-514
- DOI: https://doi.org/10.1090/spmj/1766
- Published electronically: June 7, 2023
- HTML | PDF | Request permission
Abstract:
A Schwarz function on an open domain $\Omega$ is a holomorphic function satisfying $S(\zeta )=\overline {\zeta }$ on $\Gamma$, which is part of the boundary of $\Omega$. Sakai in 1991 gave a complete characterization of the boundary of a domain admitting a Schwarz function. In fact, if $\Omega$ is simply connected and $\Gamma =\partial \Omega \cap D(\zeta ,r)$, then $\Gamma$ has to be regular real analytic. This paper is an attempt to describe $\Gamma$ when the boundary condition is slightly relaxed. In particular, three different scenarios over a simply connected domain $\Omega$ are treated: when $f_1(\zeta )=\overline {\zeta }f_2(\zeta )$ on $\Gamma$ with $f_1,f_2$ holomorphic and continuous up to the boundary, when $\mathcal {U}/\mathcal {V}$ equals certain real analytic function on $\Gamma$ with $\mathcal {U},\mathcal {V}$ positive and harmonic on $\Omega$ and vanishing on $\Gamma$, and when $S(\zeta )=\Phi (\zeta ,\overline {\zeta })$ on $\Gamma$ with $\Phi$ a holomorphic function of two variables. It turns out that the boundary piece $\Gamma$ can be, respectively, anything from $C^\infty$ to merely $C^1$, regular except finitely many points, or regular except for a measure zero set.References
- Makoto Sakai, Regularity of a boundary having a Schwarz function, Acta Math. 166 (1991), no. 3-4, 263–297. MR 1097025, DOI 10.1007/BF02398888
- Kh. Kh. Karmona, P. V. Paramonov, and K. Yu. Fedorovskiĭ, Uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions, Mat. Sb. 193 (2002), no. 10, 75–98 (Russian, with Russian summary); English transl., Sb. Math. 193 (2002), no. 9-10, 1469–1492. MR 1937036, DOI 10.1070/SM2002v193n10ABEH000690
- David S. Jerison and Carlos E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147. MR 676988, DOI 10.1016/0001-8708(82)90055-X
- Walter Rudin, Function theory in the unit ball of $\Bbb C^n$, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1980 edition. MR 2446682
- K. Yu. Fedorovskiĭ, On some properties and examples of Nevanlinna domains, Tr. Mat. Inst. Steklova 253 (2006), no. Kompleks. Anal. i Prilozh., 204–213 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2(253) (2006), 186–194. MR 2338697, DOI 10.1134/s0081543806020155
- Konstantin Dyakonov and Dmitry Khavinson, Smooth functions in star-invariant subspaces, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 59–66. MR 2198372, DOI 10.1090/conm/393/07371
- M. Ya. Mazalov, An example of a nonconstant bianalytic function vanishing everywhere on a nowhere analytic boundary, Mat. Zametki 62 (1997), no. 4, 629–632 (Russian); English transl., Math. Notes 62 (1997), no. 3-4, 524–526 (1998). MR 1620111, DOI 10.1007/BF02358988
- M. Ya. Mazalov, An example of a nonrectifiable Nevanlinna contour, Algebra i Analiz 27 (2015), no. 4, 50–58 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 27 (2016), no. 4, 625–630. MR 3580191, DOI 10.1090/spmj/1409
- M. Ya. Mazalov, On Nevanlinna domains with fractal boundaries, Algebra i Analiz 29 (2017), no. 5, 90–110 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 29 (2018), no. 5, 777–791. MR 3724640, DOI 10.1090/spmj/1516
- Yu. S. Belov and K. Yu. Fedorovskiĭ, Model spaces containing univalent functions, Uspekhi Mat. Nauk 73 (2018), no. 1(439), 181–182 (Russian); English transl., Russian Math. Surveys 73 (2018), no. 1, 172–174. MR 3749622, DOI 10.4213/rm9807
- Yurii Belov, Alexander Borichev, and Konstantin Fedorovskiy, Nevanlinna domains with large boundaries, J. Funct. Anal. 277 (2019), no. 8, 2617–2643. MR 3990729, DOI 10.1016/j.jfa.2018.12.015
- R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 1, 37–76 (English, with French summary). MR 270196, DOI 10.5802/aif.338
- Mihai Putinar and Harold S. Shapiro, The Friedrichs operator of a planar domain, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., vol. 113, Birkhäuser, Basel, 2000, pp. 303–330. MR 1771771
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 268655
- Joseph A. Cima and William T. Ross, The backward shift on the Hardy space, Mathematical Surveys and Monographs, vol. 79, American Mathematical Society, Providence, RI, 2000. MR 1761913, DOI 10.1090/surv/079
- Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR 1065993, DOI 10.1007/978-3-642-61497-2
- Nikolai A. Shirokov, Analytic functions smooth up to the boundary, Lecture Notes in Mathematics, vol. 1312, Springer-Verlag, Berlin, 1988. MR 947146, DOI 10.1007/BFb0082810
- A. D. Baranov and K. Yu. Fedorovskiĭ, Boundary regularity of Nevanlinna domains and univalent functions in model subspaces, Mat. Sb. 202 (2011), no. 12, 3–22 (Russian, with Russian summary); English transl., Sb. Math. 202 (2011), no. 11-12, 1723–1740. MR 2919247, DOI 10.1070/SM2011v202n12ABEH004205
- Lennart Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325–345. MR 50011, DOI 10.1007/BF02392289
- B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values, Canadian J. Math. 22 (1970), 1266–1283. MR 273024, DOI 10.4153/CJM-1970-143-x
- K. Yu. Fedorovskiĭ, On uniform approximations of functions by $n$-analytic polynomials on rectifiable contours in $\textbf {C}$, Mat. Zametki 59 (1996), no. 4, 604–610, 640 (Russian, with Russian summary); English transl., Math. Notes 59 (1996), no. 3-4, 435–439. MR 1445202, DOI 10.1007/BF02308692
- C. L. Siegel, Topics in complex function theory. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Elliptic functions and uniformization theory; Translated from the German by A. Shenitzer and D. Solitar; With a preface by Wilhelm Magnus; Reprint of the 1969 edition; A Wiley-Interscience Publication. MR 1008930
- Alexander Volberg, On the dimension of harmonic measure of Cantor repellers, Michigan Math. J. 40 (1993), no. 2, 239–258. MR 1226830, DOI 10.1307/mmj/1029004751
Bibliographic Information
- D. Vardakis
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48823
- Email: jimvardakis@gmail.com
- A. Volberg
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48823; and Hausdorff Center for Mathematics, Bonn, Germany
- Email: volberg@msu.edu
- Received by editor(s): June 1, 2021
- Published electronically: June 7, 2023
- Additional Notes: The second author was partially supported by NSF grant DMS 1900286 and Alexander von Humboldt Foundation
- © Copyright 2023 American Mathematical Society
- Journal: St. Petersburg Math. J. 34 (2023), 497-514
- MSC (2020): Primary 42B20; Secondary 35R35, 76D27
- DOI: https://doi.org/10.1090/spmj/1766
Dedicated: To Nikolai Nikolski, who taught me what is important in mathematics and in life — Sasha Volberg