Global pointwise estimates of positive solutions to sublinear equations
HTML articles powered by AMS MathViewer
- by I. E. Verbitsky;
- St. Petersburg Math. J. 34 (2023), 531-556
- DOI: https://doi.org/10.1090/spmj/1768
- Published electronically: June 7, 2023
- HTML | PDF | Request permission
Abstract:
Bilateral pointwise estimates are provided for positive solutions $u$ to the sublinear integral equation \begin{equation*} u = \mathbf {G}(\sigma u^q) + f \quad \text {in } \ \Omega , \end{equation*} for $0 < q < 1$, where $\sigma \ge 0$ is a measurable function or a Radon measure, $f \ge 0$, and $\mathbf {G}$ is the integral operator associated with a positive kernel $G$ on $\Omega \times \Omega$. The main results, which include the existence criteria and uniqueness of solutions, hold true for quasimetric, or quasimetrically modifiable kernels $G$.
As a consequence, bilateral estimates are obtained, along with existence and uniqueness, for positive solutions $u$, possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian, \begin{equation*} (-\Delta )^{\frac {\alpha }{2}} u = \sigma u^q + \mu \quad \text {in}\quad \Omega , \quad u=0 \quad \text {in}\,\, \Omega ^c, \end{equation*} where $0<q<1$, and $\mu , \sigma \ge 0$ are measurable functions, or Radon measures, on a bounded uniform domain $\Omega \subset \mathbb {R}^n$ for $0 < \alpha \le 2$, or on the entire space $\mathbb {R}^n$, a ball or half-space, for $0 < \alpha <n$.
References
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441, DOI 10.1007/978-3-662-03282-4
- Hiroaki Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan 53 (2001), no. 1, 119–145. MR 1800526, DOI 10.2969/jmsj/05310119
- Alano Ancona, Some results and examples about the behavior of harmonic functions and Green’s functions with respect to second order elliptic operators, Nagoya Math. J. 165 (2002), 123–158. MR 1892102, DOI 10.1017/S0027763000008187
- L. Boccardo and L. Orsina, Sublinear equations in $L^s$, Houston J. Math. 20 (1994), no. 1, 99–114. MR 1272564
- M. Brelot, Lectures on potential theory, Lectures on Mathematics, vol. 19, Tata Institute of Fundamental Research, Bombay, 1960. Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy. MR 118980
- Haïm Brezis and Shoshana Kamin, Sublinear elliptic equations in $\textbf {R}^n$, Manuscripta Math. 74 (1992), no. 1, 87–106. MR 1141779, DOI 10.1007/BF02567660
- Haïm Brezis and Luc Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55–64. MR 820658, DOI 10.1016/0362-546X(86)90011-8
- Dat Cao and Igor Verbitsky, Nonlinear elliptic equations and intrinsic potentials of Wolff type, J. Funct. Anal. 272 (2017), no. 1, 112–165. MR 3567503, DOI 10.1016/j.jfa.2016.10.010
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- Michael Frazier, Fedor Nazarov, and Igor Verbitsky, Global estimates for kernels of Neumann series and Green’s functions, J. Lond. Math. Soc. (2) 90 (2014), no. 3, 903–918. MR 3291806, DOI 10.1112/jlms/jdu057
- Michael W. Frazier and Igor E. Verbitsky, Positive solutions to Schrödinger’s equation and the exponential integrability of the balayage, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 4, 1393–1425 (English, with English and French summaries). MR 3711130, DOI 10.5802/aif.3113
- Michael W. Frazier and Igor E. Verbitsky, Positive solutions and harmonic measure for Schrödinger operators in uniform domains, Pure Appl. Funct. Anal. 7 (2022), no. 3, 993–1024. MR 4465255
- Michael W. Frazier and Igor E. Verbitsky, Existence of the gauge for fractional Laplacian Schrödinger operators, J. Geom. Anal. 31 (2021), no. 9, 9016–9044. MR 4302210, DOI 10.1007/s12220-020-00576-y
- Bent Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139–215. MR 117453, DOI 10.1007/BF02546356
- Bent Fuglede, Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 65–88 (French). MR 190368, DOI 10.5802/aif.196
- Emilio Gagliardo, On integral trasformations with positive kernel, Proc. Amer. Math. Soc. 16 (1965), 429–434. MR 177314, DOI 10.1090/S0002-9939-1965-0177314-5
- Alexander Grigor’yan, Yuhua Sun, and Igor Verbitsky, Superlinear elliptic inequalities on manifolds, J. Funct. Anal. 278 (2020), no. 9, 108444, 34. MR 4062326, DOI 10.1016/j.jfa.2019.108444
- Alexander Grigor’yan and Igor Verbitsky, Pointwise estimates of solutions to nonlinear equations for nonlocal operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 2, 721–750. MR 4105916, DOI 10.2422/2036-2145.201802_{0}11
- Wolfhard Hansen, Uniform boundary Harnack principle and generalized triangle property, J. Funct. Anal. 226 (2005), no. 2, 452–484. MR 2160104, DOI 10.1016/j.jfa.2004.12.010
- Wolfhard Hansen and Ivan Netuka, On the Picard principle for $\Delta +\mu$, Math. Z. 270 (2012), no. 3-4, 783–807. MR 2892924, DOI 10.1007/s00209-010-0826-y
- L. I. Hedberg and Th. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187. MR 727526, DOI 10.5802/aif.944
- N. J. Kalton and I. E. Verbitsky, Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc. 351 (1999), no. 9, 3441–3497. MR 1475688, DOI 10.1090/S0002-9947-99-02215-1
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 181881
- Moshe Marcus and Laurent Véron, Nonlinear second order elliptic equations involving measures, De Gruyter Series in Nonlinear Analysis and Applications, vol. 21, De Gruyter, Berlin, 2014. MR 3156649
- V. G. Maz′ya, Prostranstva S. L. Soboleva, Leningrad. Univ., Leningrad, 1985 (Russian). MR 807364
- V. G. Maz′ja and V. P. Havin, A nonlinear potential theory, Uspehi Mat. Nauk 27 (1972), no. 6, 67–138. MR 409858
- Nikolai K. Nikolski and Igor E. Verbitsky, Fourier multipliers for weighted $L^2$ spaces with Lévy-Khinchin-Schoenberg weights, J. Reine Angew. Math. 731 (2017), 159–201. MR 3709064, DOI 10.1515/crelle-2014-0123
- Stephen Quinn and Igor E. Verbitsky, A sublinear version of Schur’s lemma and elliptic PDE, Anal. PDE 11 (2018), no. 2, 439–466. MR 3724493, DOI 10.2140/apde.2018.11.439
- Adisak Seesanea and Igor E. Verbitsky, Finite energy solutions to inhomogeneous nonlinear elliptic equations with sub-natural growth terms, Adv. Calc. Var. 13 (2020), no. 1, 53–74. MR 4048382, DOI 10.1515/acv-2017-0035
- Anton Baranov and Nikolai Nikolski (eds.), 50 years with Hardy spaces, Operator Theory: Advances and Applications, vol. 261, Birkhäuser/Springer, Cham, 2018. A tribute to Victor Havin. MR 3753717, DOI 10.1007/978-3-319-59078-3
- Igor E. Verbitsky, Bilateral estimates of solutions to quasilinear elliptic equations with sub-natural growth terms, Adv. Calc. Var. 16 (2023), no. 1, 217–231. MR 4529391, DOI 10.1515/acv-2021-0004
Bibliographic Information
- I. E. Verbitsky
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Email: verbitskyi@missouri.edu
- Received by editor(s): October 25, 2022
- Published electronically: June 7, 2023
- © Copyright 2023 American Mathematical Society
- Journal: St. Petersburg Math. J. 34 (2023), 531-556
- MSC (2020): Primary 45H05
- DOI: https://doi.org/10.1090/spmj/1768
Dedicated: Dedicated to Professor N. K. Nikolski