Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The Maxwell system in nonhomogeneous anisotropic waveguides with slowly stabilizing characteristics of the filling medium
HTML articles powered by AMS MathViewer

by B. A. Plamenevskii and A. S. Poretskii;
Translated by: the authors
St. Petersburg Math. J. 34 (2023), 635-693
DOI: https://doi.org/10.1090/spmj/1773
Published electronically: July 26, 2023

Abstract:

In a domain having several cylindrical outlets to infinity, the stationary Maxwell system with perfectly conductive boundary conditions is studied. The dielectric permittivity and magnetic permeability are assumed to be arbitrary positive definite matrix-valued functions that slowly stabilize at infinity. The authors introduce the scattering matrix, establish the unique solvability of the problem with radiation conditions at infinity, and describe the asymptotics of solutions.
References
  • B. A. Plamenevskiĭ and A. S. Poretskiĭ, The Maxwell system in waveguides with several cylindrical outlets to infinity and nonhomogeneous anisotropic filling, Algebra i Analiz 29 (2017), no. 2, 89–126 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 29 (2018), no. 2, 289–314. MR 3660675, DOI 10.1090/spmj/1494
  • A. S. Il′inskii, V. V. Kravtsov, and A. G. Sveshnikov, Mathematical models of electrodynamics, Vysh. shkola, Moscow, 1991. (Russian)
  • T. N. Galishnikova and A. S. Il′inskii, The method of integral equations in problems of wave diffraction, MAKS Press, Moscow, 2013. (Russian)
  • A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, On the problem of the excitation of a waveguide with a nonhomogeneous filling, Zh. Vychisl. Mat. Mat. Fiz. 39 (1999), no. 11, 1869–1888 (Russian, with Russian summary); English transl., Comput. Math. Math. Phys. 39 (1999), no. 11, 1794–1813. MR 1728974
  • A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, On conditions for the solvability of the problem of the excitation of a radio waveguide, Dokl. Akad. Nauk 370 (2000), no. 4, 453–456 (Russian). MR 1754108
  • A. L. Delitsyn, On the formulation of boundary value problems for a system of Maxwell equations in a cylinder and their solvability, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 3, 61–112 (Russian, with Russian summary); English transl., Izv. Math. 71 (2007), no. 3, 495–544. MR 2347091, DOI 10.1070/IM2007v071n03ABEH002366
  • P. E. Krasnushkin and E. I. Moiseev, The excitation of forced oscillations in a stratified radio-waveguide, Dokl. Akad. Nauk SSSR 264 (1982), no. 5, 1123–1127 (Russian). MR 672030
  • B. A. Plamenevskiĭ and A. S. Poretskiĭ, The Maxwell system in waveguides with several cylindrical exits to infinity, Algebra i Analiz 25 (2013), no. 1, 94–155 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 25 (2014), no. 1, 63–104. MR 3113429, DOI 10.1090/s1061-0022-2013-01280-5
  • B. A. Plamenevskiĭ and A. S. Poretskiĭ, Radiation and scattering in electromagnetic waveguides near thresholds, Algebra i Analiz 32 (2020), no. 4, 234–270 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 32 (2021), no. 4, 781–807. MR 4167869, DOI 10.1090/spmj/1670
  • B. A. Plamenevskiĭ and A. S. Poretskiĭ, On the behavior of waveguide scattering matrices near thresholds, Algebra i Analiz 30 (2018), no. 2, 188–237 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 30 (2019), no. 2, 285–319. MR 3790737, DOI 10.1090/spmj/1543
  • I. S. Gudovič and S. G. Kreĭn, Boundary value problems for overdetermined systems of partial differential equations, Differencial′nye Uravnenija i Primenen.—Trudy Sem. Processy 9 (1974), 1–145 (Russian, with English and Lithuanian summaries). MR 481612
  • M. Sh. Birman and M. Z. Solomyak, The selfadjoint Maxwell operator in arbitrary domains, Algebra i Analiz 1 (1989), no. 1, 96–110 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 99–115. MR 1015335
  • R. Picard, On the low frequency asymptotics in electromagnetic theory, J. Reine Angew. Math. 354 (1984), 50–73. MR 767572, DOI 10.1515/crll.1984.354.50
  • Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387, DOI 10.1515/9783110848915.525
  • B. A. Plamenevskii, On spectral properties of elliptic problems in domains with cylindrical ends, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 220, Amer. Math. Soc., Providence, RI, 2007, pp. 123–139. MR 2343609, DOI 10.1090/trans2/220/06
  • V. G. Maz′ja and B. A. Plamenevskiĭ, Estimates in $L_{p}$ and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary, Math. Nachr. 81 (1978), 25–82 (Russian). MR 492821, DOI 10.1002/mana.19780810103
  • S. A. Nazarov and B. A. Plamenevskiĭ, Selfadjoint elliptic problems with radiation conditions on the edges of the boundary, Algebra i Analiz 4 (1992), no. 3, 196–225 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 3, 569–594. MR 1190778
  • David Colton and Rainer Kress, Inverse acoustic and electromagnetic scattering theory, 3rd ed., Applied Mathematical Sciences, vol. 93, Springer, New York, 2013. MR 2986407, DOI 10.1007/978-1-4614-4942-3
  • I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, RI, 1969. Translated from the Russian by A. Feinstein. MR 246142, DOI 10.1090/mmono/018
  • M. S. Agranovič and M. I. Višik, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk 19 (1964), no. 3(117), 53–161 (Russian). MR 192188
  • M. Sh. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. MR 1192782, DOI 10.1007/978-94-009-4586-9
  • J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
  • N. D. Filonov, The Maxwell operator in a cylinder with coefficients that do not depend on the transverse variables, Algebra i Analiz 32 (2020), no. 1, 187–207 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 32 (2021), no. 1, 139–154. MR 4057880, DOI 10.1090/spmj/1641
  • Julian Edward, Eigenfunction decay and eigenvalue accumulation for the Laplacian on asymptotically perturbed waveguides, J. London Math. Soc. (2) 59 (1999), no. 2, 620–636. MR 1709669, DOI 10.1112/S0024610799007243
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 35Q61, 78A50
  • Retrieve articles in all journals with MSC (2020): 35Q61, 78A50
Bibliographic Information
  • B. A. Plamenevskii
  • Affiliation: St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg, Russia, 199034
  • Email: b.plamenevskii@spbu.ru
  • A. S. Poretskii
  • Affiliation: St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg, Russia, 199034
  • Email: a.poretsky@spbu.ru
  • Received by editor(s): May 17, 2022
  • Published electronically: July 26, 2023
  • Additional Notes: The research was supported by the Russian Science Foundation grant no. 22-11-00070, http://rscf.ru/en/project/22-11-00070/.
  • © Copyright 2023 American Mathematical Society
  • Journal: St. Petersburg Math. J. 34 (2023), 635-693
  • MSC (2020): Primary 35Q61; Secondary 78A50
  • DOI: https://doi.org/10.1090/spmj/1773