St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

General elementary solution of a $q$-sided convolution type homogeneous equation
HTML articles powered by AMS MathViewer

by Yu. S. Saranchuk and A. B. Shishkin;
Translated by: S. V. Kislyakov
St. Petersburg Math. J. 34 (2023), 695-713
DOI: https://doi.org/10.1090/spmj/1774
Published electronically: July 26, 2023

Abstract:

Exponential polynomials satisfying a homogeneous equation of convolution type are called its elementary solutions. The article is devoted to convolution-type operators in the complex domain that generalize the well-known operators of $q$-sided convolution and $\pi$-convolution. The properties of such operators are investigated and the general form of elementary solutions (general elementary solution) of a homogeneous equation of $q$-sided convolution type is described.
References
  • I. F. Krasichkov-Ternovskiĭ, Spectral synthesis in the complex domain for a differential operator with constant coefficients. I. The duality theorem, Mat. Sb. 182 (1991), no. 11, 1559–1587 (Russian); English transl., Math. USSR-Sb. 74 (1993), no. 2, 309–335. MR 1137863, DOI 10.1070/SM1993v074n02ABEH003349
  • A. B. Shishkin, On continuous endomorphisms of entire functions, Mat. Sb. 212 (2021), no. 4, 131–158 (Russian, with Russian summary); English transl., Sb. Math. 212 (2021), no. 4, 567–591. MR 4236255, DOI 10.4213/sm9316
  • A. B. Shishkin, Exponential synthesis in the kernel of a symmetric convolution operator, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 447 (2016), no. Issledovaniya po Lineĭnym Operatoram i Teorii Funktsiĭ. 44, 129–170 (Russian, with English summary); English transl., J. Math. Sci. (N.Y.) 229 (2018), no. 5, 572–599. MR 3580167, DOI 10.1007/s10958-018-3700-9
  • I. F. Krasičkov-Ternovskiĭ, Invariant subspaces of analytic functions. I, II. Spectral synthesis on convex domains, Mat. Sb. (N.S.) 87(129) (1972), 459–489; ibid. (N.S.) 88(130) (1972), 3–30 (Russian). MR 422636
  • A. B. Shishkin, Spectral synthesis for an operator generated by multiplication by a power of the independent variable, Mat. Sb. 182 (1991), no. 6, 828–848 (Russian); English transl., Math. USSR-Sb. 73 (1992), no. 1, 211–229. MR 1126155, DOI 10.1070/SM1992v073n01ABEH002542
  • I. F. Krasichkov-Ternovskiĭ, Spectral synthesis in the complex domain for a differential operator with constant coefficients. IV. Synthesis, Mat. Sb. 183 (1992), no. 8, 23–46 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 76 (1993), no. 2, 407–426. MR 1187248, DOI 10.1070/SM1993v076n02ABEH003420
  • A. A. Tatarkin and U. S. Saranchuk, Elementary solutions of a homogeneous $q$-sided convolution equation, Probl. Anal. Issues Anal. 7(25) (2018), no. Special Issue, 137–152. MR 3866059, DOI 10.15393/j3.art.2018.5410
  • A. A. Tatarkin and A. B. Shishkin, Synthesis in the kernel of the three-way convolution operator, Itogi Nauki i Tekhn. Ser. Sovrem. Mat. Prilozhen. Tem. Obzor., T. 193, VINITI, Moscow, 2021, pp. 130–141. (Russian)
  • A. B. Shishkin, Symmetric representations of holomorphic functions, Probl. Anal. Issues Anal. 7(25) (2018), no. Special Issue, 124–136. MR 3866058, DOI 10.15393/j3.art.2018.5390
  • A. O. Gel′fond, Calculus of finite differences, International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, 1971. Translated from the Russian. MR 342890
  • P. K. Raševskiĭ, Description of closed invariant subspaces in certain function spaces, Trudy Moskov. Mat. Obshch. 38 (1979), 139–185 (Russian). MR 544938
  • I. F. Krasichkov-Ternovskiĭ, Spectral synthesis and local description for several variables, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), no. 4, 101–130 (Russian, with Russian summary); English transl., Izv. Math. 63 (1999), no. 4, 729–755. MR 1717681, DOI 10.1070/im1999v063n04ABEH000256
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 30D20
  • Retrieve articles in all journals with MSC (2020): 30D20
Bibliographic Information
  • Yu. S. Saranchuk
  • Affiliation: Kuban′ State University, ul. Stavrapolskaya, 149, 350040, Krasnodar, Russia
  • Email: 89182859942@mail.ru
  • A. B. Shishkin
  • Affiliation: Kuban′ State University, ul. Stavrapolskaya, 149, 350040, Krasnodar, Russia
  • Email: shishkin-home@mail.ru
  • Received by editor(s): December 25, 2021
  • Published electronically: July 26, 2023
  • © Copyright 2023 American Mathematical Society
  • Journal: St. Petersburg Math. J. 34 (2023), 695-713
  • MSC (2020): Primary 30D20
  • DOI: https://doi.org/10.1090/spmj/1774