Cauchy problem for the nonlinear Hirota equation in the class of periodic infinite-zone functions
HTML articles powered by AMS MathViewer
- by
G. A. Mannonov and A. B. Khasanov;
Translated by: S. V. Kislyakov - St. Petersburg Math. J. 34 (2023), 821-845
- DOI: https://doi.org/10.1090/spmj/1780
- Published electronically: November 9, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, the method of inverse spectral problem is used to integrate the nonlinear Hirota equation in the class of periodic infinite-zone functions. An evolution of the spectral data of the periodic Dirac operator is introduced, where the coefficient of this operator is the solution of the nonlinear Hirota equation. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of five times continuously differentiable periodic infinite-zone functions is shown. In addition, it is proved that if the initial function is a $\pi$-periodic real-analytic function, then the solution of the Cauchy problem for the Hirota equation is also a real-analytic function in the variable $x$; and if the number $\pi /2$ is a period (antiperiod) of the initial function, then the number $\pi /2$ is a period (antiperiod) in the variable $x$ of the solution of the Cauchy problems for the Hirota equation.References
- C. Gardner, I. Green, M. Kruskal, and R. Miura, A method for solving the Korteweg–de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1098.
- L. D. Faddeev, Properties of the $S$-matrix of the one-dimensional Schrödinger equation, Trudy Mat. Inst. Steklov. 73 (1964), 314–336 (Russian). MR 178188
- V. A. Marchenko, Operatory Shturma-Liuvillya i ikh prilozheniya, Izdat. “Naukova Dumka”, Kiev, 1977 (Russian). MR 481179
- B. M. Levitan, Inverse Sturm-Liouville problems, VSP, Zeist, 1987. Translated from the Russian by O. Efimov. MR 933088, DOI 10.1515/9783110941937
- Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 235310, DOI 10.1002/cpa.3160210503
- V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 406174
- M. Wadati, The exact solution of the modified Korteweg–de Vries equation, J. Phys. Soc. Japn. 32 (1972), no. 6, 44–47.
- Ryogo Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Mathematical Phys. 14 (1973), 805–809. MR 338587, DOI 10.1063/1.1666399
- V. E. Zaharov, L. A. Tahtadžjan, and L. D. Faddeev, A complete description of the solutions of the “sine-Gordon” equation, Dokl. Akad. Nauk SSSR 219 (1974), 1334–1337 (Russian). MR 389050
- M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Method for solving the sine-Gordon equation, Phys. Rev. Lett. 30 (1973), 1262–1264. MR 406175, DOI 10.1103/PhysRevLett.30.1262
- I. S. Frolov, An inverse scattering problem for the Dirac system on the entire axis, Dokl. Akad. Nauk SSSR 207 (1972), 44–47 (Russian). MR 316804
- L. P. Nižnik and Fam Loĭ Vu, An inverse scattering problem on the semi-axis with a nonselfadjoint potential matrix, Ukrain. Mat. Ž. 26 (1974), 469–486, 574 (Russian). MR 350107
- L. A. Takhtadzhyan and L. D. Faddeev, Gamil′tonov podkhod v teorii solitonov, “Nauka”, Moscow, 1986 (Russian). MR 889051
- A. B. Khasanov, An inverse problem in scattering theory for a system of two first-order nonselfadjoint differential equations, Dokl. Akad. Nauk SSSR 277 (1984), no. 3, 559–562 (Russian). MR 756760
- Y. Tao and J. He, Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation, Phys. Rev. E 85 (2012), 02660.
- G. N. Shaikhova and Y. S. Kalykbay, Exact solutions of the Hirota equation using the sine-cosine method, Vestn. Yuzn.-Ural. Gos. Univ. Ser. Math., Mechan., Phys. 13 (2021), no. 3, 47–52.
- A. B. Khasanov and U. A. Khoitmetov, On the integration of the Korteweg–de Vries equation in a class of rapidly decreasing complex-valued functions, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (2018), 79–90 (Russian, with English and Russian summaries); English transl., Russian Math. (Iz. VUZ) 62 (2018), no. 3, 68–78. MR 3890359
- A. B. Khasanov and U. A. Hoitmetov, Integration of the general loaded Korteweg–de Vries equation with an integral type source in the class of rapidly decreasing complex-valued functions, Izv. Vyssh. Uchebn. Zaved. Mat. 7 (2021), 52–66 (Russian, with English and Russian summaries); English transl., Russian Math. (Iz. VUZ) 65 (2021), no. 7, 43–57. MR 4364137, DOI 10.26907/0021-3446-2021-7-52-66
- A. B. Khasanov and U. A. Hoitmetov, On integration of the loaded mKdV equation in the class of rapidly decreasing functions, Izv. Irkutsk. Gos. Univ. Ser. Mat. 38 (2021), 19–35 (English, with English and Russian summaries). MR 4363053, DOI 10.26516/1997-7670.2021.38.19
- A. B. Khasanov and G. U. Urazboev, Integration of the sine-Gordon equation with a self-consistent source of integral type in the case of multiple eigenvalues, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (2009), 55–66 (Russian, with English and Russian summaries); English transl., Russian Math. (Iz. VUZ) 53 (2009), no. 3, 45–55. MR 2581453, DOI 10.3103/S1066369X09030037
- A. B. Khasanov and G. U. Urazboev, On the sine-Gordon equation with a self-consistent source of the integral type, J. Math. Phys. Anal. Geom. 2 (2006), no. 3, 287–298, 339 (English, with English and Ukrainian summaries). MR 2249084
- A. R. Its and V. B. Matveev, Schrödinger operators with the finite-band spectrum and the $N$-soliton solutions of the Korteweg-de Vries equation, Teoret. Mat. Fiz. 23 (1975), no. 1, 51–68 (Russian, with English summary). MR 479120
- B. A. Dubrovin and S. P. Novikov, Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, Ž. Èksper. Teoret. Fiz. 67 (1974), no. 6, 2131–2144 (Russian, with English summary); English transl., Soviet Physics JETP 40 (1974), no. 6, 1058–1063. MR 382877
- A. R. Its, Inversion of hyperelliptic integrals, and integration of nonlinear differential equations, Vestnik Leningrad. Univ. 7, Mat. Meh. Astronom. vyp. 2 (1976), 39–46, 162 (Russian, with English summary). MR 609747
- A. R. Īts and V. P. Kotljarov, Explicit formulas for solutions of a nonlinear Schrödinger equation, Dokl. Akad. Nauk Ukrain. SSR Ser. A 11 (1976), 965–968, 1051 (Russian, with English summary). MR 477433
- A. O. Smirnov, Elliptic solutions of the nonlinear Schrödinger equation and a modified Korteweg-de Vries equation, Mat. Sb. 185 (1994), no. 8, 103–114 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 2, 461–470. MR 1302625, DOI 10.1070/SM1995v082n02ABEH003575
- V. B. Matveev and A. O. Smirnov, Solutions of the Ablowitz-Kaup-Newell-Segur hierarchy equations of the “rogue wave” type: a unified approach, Teoret. Mat. Fiz. 186 (2016), no. 2, 191–220 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 186 (2016), no. 2, 156–182. MR 3462749, DOI 10.4213/tmf8958
- V. B. Matveev and A. O. Smirnov, Two-phase periodic solutions of equations from the AKNS hierarchy, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 473 (2018), no. Voprosy Kvantovoĭ Teorii Polya i Statisticheskoĭ Fiziki. 25, 205–227 (Russian, with English summary); English transl., J. Math. Sci. (N.Y.) 242 (2019), no. 5, 722–741. MR 3893858
- V. B. Matveev and A. O. Smirnov, Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: general analysis and simplest examples, Teoret. Mat. Fiz. 204 (2020), no. 3, 383–395 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 204 (2020), no. 3, 1154–1165. MR 4153747, DOI 10.4213/tmf9901
- Yu. A. Mitropol′skij, N. N. Bogolyubov, jun., A. K. Prikarpatskij, and V. G. Samojlenko, Integrable dynamical systems: spectral and differential-geometric aspects, Naukova Dumka, Kiev, 1987. (Russian)
- S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
- M. Z. Zamonov and A. B. Khasanov, Solvability of the inverse problem for the Dirac system on the whole axis, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1985), 3–7, 110 (Russian). MR 820184
- B. A. Dubrovin, A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 41–51 (Russian). MR 486780
- Vladimir B. Matveev, 30 years of finite-gap integration theory, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 837–875. MR 2377678, DOI 10.1098/rsta.2007.2055
- P. G. Grinevich and I. A. Taimanov, Spectral conservation laws for periodic nonlinear equations of the Melnikov type, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, vol. 224, Amer. Math. Soc., Providence, RI, 2008, pp. 125–138. MR 2462357, DOI 10.1090/trans2/224/05
- A. B. Khasanov and M. M. Khasanov, Integration of the nonlinear Schrödinger equation with an additional term in the class of periodic functions, Teoret. Mat. Fiz. 199 (2019), no. 1, 60–68 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 199 (2019), no. 1, 525–532. MR 3942841, DOI 10.4213/tmf9581
- A. B. Khasanov and M. M. Matjakubov, Integration of the nonlinear Korteweg–de Vries equation with an additional term, Teoret. Mat. Fiz. 203 (2020), no. 2, 192–204 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 203 (2020), no. 2, 594–607. MR 4091864, DOI 10.4213/tmf9693
- A. B. Hasanov and T. G. Hasanov, The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 506 (2021), no. Matematicheskie Voprosy Teorii Rasprostraneniya Voln. 51, 258–278 (Russian, with English summary); English transl., J. Math. Sci. (N.Y.) 283 (2024), no. 4, 674–689. MR 4350038
- A. B. Khasanov and T. Zh. Allanazarova, On the modified Korteweg-de-Vries equation with loaded term, Ukrainian Math. J. 73 (2022), no. 11, 1783–1809. Translation of Ukraïn. Mat. Zh. 73 (2021), no. 11, 1541–1563. MR 4475116, DOI 10.1007/s11253-022-02030-4
- A. V. Domrin, Remarks on a local version of the method of the inverse scattering problem, Tr. Mat. Inst. Steklova 253 (2006), no. Kompleks. Anal. i Prilozh., 46–60 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2(253) (2006), 37–50. MR 2338686, DOI 10.1134/s0081543806020040
- A. V. Domrin, Real-analytic solutions of the nonlinear Schrödinger equation, Trans. Moscow Math. Soc. , posted on (2014), 173–183. MR 3308608, DOI 10.1090/s0077-1554-2014-00236-3
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 10757
- P. Dzhakov and B. S. Mityagin, Instability zones of one-dimensional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk 61 (2006), no. 4(370), 77–182 (Russian, with Russian summary); English transl., Russian Math. Surveys 61 (2006), no. 4, 663–766. MR 2279044, DOI 10.1070/RM2006v061n04ABEH004343
- B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators, Mathematics and its Applications (Soviet Series), vol. 59, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian. MR 1136037, DOI 10.1007/978-94-011-3748-5
- T. V. Misjura, Characteristics of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator. II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 31 (1979), 102–109, 168 (Russian). MR 548297
- A. B. Khasanov and A. B. Yakhshimuratov, An analogue of G. Borg’s inverse theorem for the Dirac operator, Uzbek. Mat. Zh. 3 (2000), 40–46 (Russian, with English and Uzbek summaries). MR 1803966
- A. B. Khasanov and A. M. Ibragimov, On an inverse problem for the Dirac operator with periodic potential, Uzbek. Mat. Zh. 3-4 (2001), 48–55 (Russian, with English and Uzbek summaries). MR 1940039
- Sonja Currie, Thomas T. Roth, and Bruce A. Watson, Borg’s periodicity theorems for first-order self-adjoint systems with complex potentials, Proc. Edinb. Math. Soc. (2) 60 (2017), no. 3, 615–633. MR 3674081, DOI 10.1017/S0013091516000389
- I. V. Stankevič, A certain inverse spectral analysis problem for Hill’s equation, Dokl. Akad. Nauk SSSR 192 (1970), 34–37 (Russian). MR 262589
- E. Trubowitz, The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30 (1977), no. 3, 321–337. MR 430403, DOI 10.1002/cpa.3160300305
- A. B. Khasanov and A. B. Yakhshimuratov, Inverse problem on the half-line for the Sturm-Liouville operator with periodic potential, Differ. Equ. 51 (2015), no. 1, 23–32. Translation of Differ. Uravn. 51 (2015), no. 1, 24–33. MR 3373000, DOI 10.1134/S0012266115010036
- Göran Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78 (1946), 1–96 (German). MR 15185, DOI 10.1007/BF02421600
- N. I. Ahiezer, Continuous analogues of orthogonal polynomials on a system of intervals, Dokl. Akad. Nauk SSSR 141 (1961), 263–266 (Russian). MR 140970
- H. Flaschka, On the inverse problem for Hill’s operator, Arch. Rational Mech. Anal. 59 (1975), no. 4, 293–309. MR 387711, DOI 10.1007/BF00250422
- A. B. Yakhshimuratov, Integration of a higher-order nonlinear Schrödinger system with a self-consistent source in the class of periodic functions, Teoret. Mat. Fiz. 202 (2020), no. 2, 157–169 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 202 (2020), no. 2, 137–149. MR 4070074, DOI 10.4213/tmf9712
- D. Bättig, B. Grébert, J.-C. Guillot, and T. Kappeler, Foliation of phase space for the cubic nonlinear Schrödinger equation, Compositio Math. 85 (1993), no. 2, 163–199. MR 1204779
- Benoît Grébert and Jean-Claude Guillot, Gaps of one-dimensional periodic AKNS systems, Forum Math. 5 (1993), no. 5, 459–504. MR 1232720, DOI 10.1515/form.1993.5.459
- Evgeny Korotyaev, Inverse problem and estimates for periodic Zakharov-Shabat systems, J. Reine Angew. Math. 583 (2005), 87–115. MR 2146853, DOI 10.1515/crll.2005.2005.583.87
- Plamen Djakov and Boris Mityagin, Instability zones of a periodic 1D Dirac operator and smoothness of its potential, Comm. Math. Phys. 259 (2005), no. 1, 139–183. MR 2169972, DOI 10.1007/s00220-005-1347-0
- Evgeny Korotyaev and Dmitrii Mokeev, Dubrovin equation for periodic Dirac operator on the half-line, Appl. Anal. 101 (2022), no. 1, 337–365. MR 4388817, DOI 10.1080/00036811.2020.1742882
- A. M. Ibragimov, Some questions of the theory of inverse spectral problems for the Dirac’s operator with periodic potential, Avtoref. kand. diss., Tashkent, 2002. (Russian)
- H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 427731, DOI 10.1002/cpa.3160290203
- H. P. McKean and E. Trubowitz, Hill’s surfaces and their theta functions, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1042–1085. MR 508448, DOI 10.1090/S0002-9904-1978-14542-X
- Martin U. Schmidt, Integrable systems and Riemann surfaces of infinite genus, Mem. Amer. Math. Soc. 122 (1996), no. 581, viii+111. MR 1329944, DOI 10.1090/memo/0581
Bibliographic Information
- G. A. Mannonov
- Affiliation: Samarkand State University, Universitetskii Bul′var 15, 140104 Samarkand, Uzbekistan
- Email: mannonov.g@mail.ru
- A. B. Khasanov
- Email: ahasanov2002@mail.ru
- Received by editor(s): February 15, 2022
- Published electronically: November 9, 2023
- © Copyright 2023 American Mathematical Society
- Journal: St. Petersburg Math. J. 34 (2023), 821-845
- MSC (2020): Primary 53A04; Secondary 52A40, 52A10
- DOI: https://doi.org/10.1090/spmj/1780