Triangulated categories of framed bispectra and framed motives
HTML articles powered by AMS MathViewer
- by G. Garkusha and I. Panin;
- St. Petersburg Math. J. 34 (2023), 991-1017
- DOI: https://doi.org/10.1090/spmj/1786
- Published electronically: January 26, 2024
- HTML | PDF | Request permission
Abstract:
An alternative approach to the classical Morel–Voevodsky stable motivic homotopy theory $SH(k)$ is suggested. The triangulated category of framed bispectra $SH_{\operatorname {nis}}^{\operatorname {fr}}(k)$ and effective framed bispectra $SH_{\operatorname {nis}}^{\operatorname {fr},\operatorname {eff}}(k)$ are introduced in the paper. Both triangulated categories only involve Nisnevich local equivalences and have nothing to do with any kind of motivic equivalences. It is shown that $SH_{\operatorname {nis}}^{\operatorname {fr}}(k)$ and $SH_{\operatorname {nis}}^{\operatorname {fr},\operatorname {eff}}(k)$ recover classical Morel–Voevodsky triangulated categories of bispectra $SH(k)$ and effective bispectra $SH^{\operatorname {eff}}(k)$ respectively.
Also, $SH(k)$ and $SH^{\operatorname {eff}}(k)$ are recovered as the triangulated category of framed motivic spectral functors $SH_{S^1}^{\operatorname {fr}}[\mathcal {F}r_0(k)]$ and the triangulated category of framed motives $\mathcal {SH}^{\operatorname {fr}}(k)$ constructed in the paper.
References
- A. Ananyevskiy, G. Garkusha, and I. Panin, Cancellation theorem for framed motives of algebraic varieties, Adv. Math. 383 (2021), Paper No. 107681, 38. MR 4232551, DOI 10.1016/j.aim.2021.107681
- T. Bachmann and J. Fasel, On the effectivity of spectra representing motivic cohomology theories, arXiv:1710.00594v3.
- Benjamin A. Blander, Local projective model structures on simplicial presheaves, $K$-Theory 24 (2001), no. 3, 283–301. MR 1876801, DOI 10.1023/A:1013302313123
- Brian Day, On closed categories of functors, Reports of the Midwest Category Seminar, IV, Lecture Notes in Math., Vol. 137, Springer, Berlin-New York, 1970, pp. 1–38. MR 272852
- Bjørn Ian Dundas, Oliver Röndigs, and Paul Arne Østvær, Enriched functors and stable homotopy theory, Doc. Math. 8 (2003), 409–488. MR 2029170, DOI 10.4171/dm/147
- Grigory Garkusha, Reconstructing rational stable motivic homotopy theory, Compos. Math. 155 (2019), no. 7, 1424–1443. MR 3975501, DOI 10.1112/s0010437x19007425
- Grigory Garkusha and Ivan Panin, Homotopy invariant presheaves with framed transfers, Camb. J. Math. 8 (2020), no. 1, 1–94. MR 4085432, DOI 10.4310/CJM.2020.v8.n1.a1
- Grigory Garkusha and Ivan Panin, Framed motives of algebraic varieties (after V. Voevodsky), J. Amer. Math. Soc. 34 (2021), no. 1, 261–313. MR 4188819, DOI 10.1090/jams/958
- G. A. Garkusha, I. A. Panin, and P. Østvær, Framed motivic $\Gamma$-spaces, Izv. Ross. Akad. Nauk Ser. Mat. 87 (2023), no. 1, 3–32 (Russian, with Russian summary); English transl., Izv. Math. 87 (2023), no. 1, 1–28. MR 4634753, DOI 10.4213/im9246
- Bruno Kahn and Marc Levine, Motives of Azumaya algebras, J. Inst. Math. Jussieu 9 (2010), no. 3, 481–599. MR 2650808, DOI 10.1017/S1474748010000022
- Marc Levine, The homotopy coniveau tower, J. Topol. 1 (2008), no. 1, 217–267. MR 2365658, DOI 10.1112/jtopol/jtm004
- Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224, DOI 10.1007/BF02698831
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- I. Panin, A. Stavrova, and N. Vavilov, On Grothendieck-Serre’s conjecture concerning principal $G$-bundles over reductive group schemes: I, Compos. Math. 151 (2015), no. 3, 535–567. MR 3320571, DOI 10.1112/S0010437X14007635
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- Vladimir Voevodsky, $\mathbf A^1$-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 579–604. MR 1648048
- —, Notes on framed correspondences, unpublished, 2001, https://www.math.ias.edu/vladimir/publications
Bibliographic Information
- G. Garkusha
- Affiliation: Department of Mathematics, Swansea University, Fabian Way, Swansea SA1 8EN, United Kingdom
- MR Author ID: 660286
- ORCID: 0000-0001-9836-0714
- Email: g.garkusha@swansea.ac.uk
- I. Panin
- Affiliation: St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia
- MR Author ID: 238161
- Email: paniniv@gmail.com
- Received by editor(s): July 10, 2022
- Published electronically: January 26, 2024
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 34 (2023), 991-1017
- MSC (2020): Primary 14F42; Secondary 18G80, 55P42
- DOI: https://doi.org/10.1090/spmj/1786
- MathSciNet review: 4709786
Dedicated: In memory of A. A. Suslin