Donoghue $m$-functions for Singular SturmâLiouville operators
HTML articles powered by AMS MathViewer
- by F. Gesztesy, L. L. Littlejohn, R. Nichols, M. Piorkowski and J. Stanfill
- St. Petersburg Math. J. 35 (2024), 101-138
- DOI: https://doi.org/10.1090/spmj/1795
- Published electronically: April 12, 2024
- HTML | PDF | Request permission
Abstract:
Let $\dot {A}$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space $\mathcal {H}$ with equal deficiency indices and denote by $\mathcal {N}_i = \ker ((\dot {A})^* - i I_{\mathcal {H}})$, $\dim (\mathcal {N}_i)=k\in \mathbb {N} \cup \{\infty \}$, the associated deficiency subspace of $\dot {A}$. If $A$ denotes a self-adjoint extension of $\dot {A}$ in $\mathcal {H}$, the Donoghue $m$-operator $M_{A,\mathcal {N}_i}^{Do} (\,\cdot \,)$ in $\mathcal {N}_i$ associated with the pair $(A,\mathcal {N}_i)$ is given by $M_{A,\mathcal {N}_i}^{Do}(z)=zI_{\mathcal {N}_i} + (z^2+1) P_{\mathcal {N}_i} (A - z I_{\mathcal {H}})^{-1} P_{\mathcal {N}_i} \vert _{\mathcal {N}_i}$, $z\in \mathbb {C}\setminus \mathbb {R},$ with $I_{\mathcal {N}_i}$ the identity operator in $\mathcal {N}_i$, and $P_{\mathcal {N}_i}$ the orthogonal projection in $\mathcal {H}$ onto $\mathcal {N}_i$.
Assuming the standard local integrability hypotheses on the coefficients $p, q,r$, we study all self-adjoint realizations corresponding to the differential expression $\tau =\frac {1}{r(x)}[-\frac {d}{dx}p(x)\frac {d}{dx} + q(x)]$ for a.e. $x\in (a,b) \subseteq \mathbb {R}$, in $L^2((a,b); rdx)$, and, as our principal aim in this paper, systematically construct the associated Donoghue $m$-functions (respectively, $(2 \times 2)$ matrices) in all cases where $\tau$ is in the limit circle case at least at one interval endpoint $a$ or $b$.
References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964. For sale by the Superintendent of Documents. MR 167642
- S. Blake Allan, Justin Hanbin Kim, Gregory Michajlyszyn, Roger Nichols, and Don Rung, Explicit Krein resolvent identities for singular Sturm-Liouville operators with applications to Bessel operators, Oper. Matrices 14 (2020), no. 4, 1043â1099. MR 4207171, DOI 10.7153/oam-2020-14-65
- Daniel Alpay and Jussi Behrndt, Generalized $Q$-functions and Dirichlet-to-Neumann maps for elliptic differential operators, J. Funct. Anal. 257 (2009), no. 6, 1666â1694. MR 2540988, DOI 10.1016/j.jfa.2009.06.011
- W. O. Amrein and D. B. Pearson, $M$ operators: a generalisation of Weyl-Titchmarsh theory, J. Comput. Appl. Math. 171 (2004), no. 1-2, 1â26. MR 2077193, DOI 10.1016/j.cam.2004.01.020
- Jussi Behrndt, Seppo Hassi, and Henk de Snoo, Boundary value problems, Weyl functions, and differential operators, Monographs in Mathematics, vol. 108, BirkhÀuser/Springer, Cham, [2020] ©2020. MR 3971207, DOI 10.1007/978-3-030-36714-5
- Jussi Behrndt and Matthias Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal. 243 (2007), no. 2, 536â565. MR 2289696, DOI 10.1016/j.jfa.2006.10.009
- Jussi Behrndt and Till Micheler, Elliptic differential operators on Lipschitz domains and abstract boundary value problems, J. Funct. Anal. 267 (2014), no. 10, 3657â3709. MR 3266243, DOI 10.1016/j.jfa.2014.09.017
- Jussi Behrndt and Jonathan Rohleder, Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions, Adv. Math. 285 (2015), 1301â1338. MR 3406527, DOI 10.1016/j.aim.2015.08.016
- Jussi Behrndt and Jonathan Rohleder, Titchmarsh-Weyl theory for Schrödinger operators on unbounded domains, J. Spectr. Theory 6 (2016), no. 1, 67â87. MR 3484378, DOI 10.4171/JST/118
- Johannes F. Brasche, Mark Malamud, and Hagen Neidhardt, Weyl function and spectral properties of self-adjoint extensions, Integral Equations Operator Theory 43 (2002), no. 3, 264â289. MR 1902949, DOI 10.1007/BF01255563
- B. M. Brown, G. Grubb, and I. G. Wood, $M$-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems, Math. Nachr. 282 (2009), no. 3, 314â347. MR 2503156, DOI 10.1002/mana.200810740
- Malcolm Brown, James Hinchcliffe, Marco Marletta, Serguei Naboko, and Ian Wood, The abstract Titchmarsh-Weyl $M$-function for adjoint operator pairs and its relation to the spectrum, Integral Equations Operator Theory 63 (2009), no. 3, 297â320. MR 2491033, DOI 10.1007/s00020-009-1668-z
- Malcolm Brown, Marco Marletta, Serguei Naboko, and Ian Wood, Boundary triplets and $M$-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. Lond. Math. Soc. (2) 77 (2008), no. 3, 700â718. MR 2418300, DOI 10.1112/jlms/jdn006
- B. M. Brown, M. Marletta, S. Naboko, and I. Wood, Inverse problems for boundary triples with applications, Studia Math. 237 (2017), no. 3, 241â275. MR 3633967, DOI 10.4064/sm8613-11-2016
- Jochen BrĂŒning, Vladimir Geyler, and Konstantin Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev. Math. Phys. 20 (2008), no. 1, 1â70. MR 2379246, DOI 10.1142/S0129055X08003249
- Stephen Clark, Fritz Gesztesy, and Roger Nichols, Principal solutions revisited, Stochastic and infinite dimensional analysis, Trends Math., BirkhĂ€user/Springer, [Cham], 2016, pp. 85â117. MR 3708378, DOI 10.1007/978-3-319-07245-6_{6}
- Stephen Clark, Fritz Gesztesy, Roger Nichols, and Maxim Zinchenko, Boundary data maps and Kreinâs resolvent formula for Sturm-Liouville operators on a finite interval, Oper. Matrices 8 (2014), no. 1, 1â71. MR 3202926, DOI 10.7153/oam-08-01
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 69338
- V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and generalized resolvents of symmetric operators, Russ. J. Math. Phys. 16 (2009), no. 1, 17â60. MR 2486805, DOI 10.1134/S1061920809010026
- V. A. Derkach and M. M. Malamud, On the Weyl function and Hermite operators with lacunae, Dokl. Akad. Nauk SSSR 293 (1987), no. 5, 1041â1046 (Russian). MR 890193
- V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1â95. MR 1087947, DOI 10.1016/0022-1236(91)90024-Y
- V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141â242. Analysis. 3. MR 1318517, DOI 10.1007/BF02367240
- V. A. Derkach and M. M. Malamud, On some classes of holomorphic operator functions with nonnegative imaginary part, Operator theory, operator algebras and related topics (TimiĆoara, 1996) Theta Found., Bucharest, 1997, pp. 113â147. MR 1728416
- â, Weyl function of a Hermitian operator and its connection with characteristic function, arxiv:1503.08956.
- V. A. Derkach, M. M. Malamud, and Ă. R. TsekanovskiÄ, Sectorial extensions of a positive operator, and the characteristic function, Dokl. Akad. Nauk SSSR 298 (1988), no. 3, 537â541 (Russian); English transl., Soviet Math. Dokl. 37 (1988), no. 1, 106â110. MR 925955
- Aad Dijksma, Heinz Langer, and Henk de Snoo, Hamiltonian systems with eigenvalue depending boundary conditions, Contributions to operator theory and its applications (Mesa, AZ, 1987) Oper. Theory Adv. Appl., vol. 35, BirkhĂ€user, Basel, 1988, pp. 37â83. MR 1017665
- William F. Donoghue Jr., On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559â579. MR 190761, DOI 10.1002/cpa.3160180402
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1009163
- Jonathan Eckhardt, Fritz Gesztesy, Roger Nichols, and Gerald Teschl, Weyl-Titchmarsh theory for Sturm-Liouville operators with distributional potentials, Opuscula Math. 33 (2013), no. 3, 467â563. MR 3046408, DOI 10.7494/OpMath.2013.33.3.467
- W. N. Everitt and A. Zettl, On a class of integral inequalities, J. London Math. Soc. (2) 17 (1978), no. 2, 291â303. MR 477234, DOI 10.1112/jlms/s2-17.2.291
- Guglielmo Fucci, Fritz Gesztesy, Klaus Kirsten, Lance L. Littlejohn, Roger Nichols, and Jonathan Stanfill, The Kreinâvon Neumann extension revisited, Appl. Anal. 101 (2022), no. 5, 1593â1616. MR 4410827, DOI 10.1080/00036811.2021.1938005
- C. T. Fulton, Parametrizations of Titchmarshâs $âm(\lambda )$â-functions in the limit circle case, Ph.D. Thesis, Technical Univ. Aachen, Aachen, 1973.
- Charles T. Fulton, Parametrizations of Titchmarshâs $m(\lambda )$-functions in the limit circle case, Trans. Amer. Math. Soc. 229 (1977), 51â63. MR 450657, DOI 10.1090/S0002-9947-1977-0450657-6
- Fritz Gesztesy, Nigel J. Kalton, Konstantin A. Makarov, and Eduard Tsekanovskii, Some applications of operator-valued Herglotz functions, Operator theory, system theory and related topics (Beer-Sheva/Rehovot, 1997) Oper. Theory Adv. Appl., vol. 123, BirkhĂ€user, Basel, 2001, pp. 271â321. MR 1821917
- Fritz Gesztesy, Lance L. Littlejohn, and Roger Nichols, On self-adjoint boundary conditions for singular Sturm-Liouville operators bounded from below, J. Differential Equations 269 (2020), no. 9, 6448â6491. MR 4107059, DOI 10.1016/j.jde.2020.05.005
- Fritz Gesztesy, Konstantin A. Makarov, and Eduard Tsekanovskii, An addendum to Kreinâs formula, J. Math. Anal. Appl. 222 (1998), no. 2, 594â606. MR 1628437, DOI 10.1006/jmaa.1998.5948
- Fritz Gesztesy, Sergey N. Naboko, Rudi Weikard, and Maxim Zinchenko, Donoghue-type $m$-functions for Schrödinger operators with operator-valued potentials, J. Anal. Math. 137 (2019), no. 1, 373â427. MR 3938008, DOI 10.1007/s11854-018-0076-1
- Fritz Gesztesy, Roger Nichols, and Jonathan Stanfill, A survey of some norm inequalities, Complex Anal. Oper. Theory 15 (2021), no. 2, Paper No. 23, 33. MR 4206126, DOI 10.1007/s11785-020-01060-9
- F. Gesztesy, M. M. H. Pang, and J. Stanfill, On domain properties of Bessel-type operators, preprint, 2021, 36 pp., to appear in Discrete Contin. Dyn. Syst., Ser. S, Doi: 10.3934/dcdss.2022201.
- F. Gesztesy and L. Pittner, On the Friedrichs extension of ordinary differential operators with strongly singular potentials, Acta Phys. Austriaca 51 (1979), no. 3-4, 259â268. MR 553603
- Fritz Gesztesy and Eduard Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61â138. MR 1784638, DOI 10.1002/1522-2616(200010)218:1<61::AID-MANA61>3.3.CO;2-4
- Fritz Gesztesy, Rudi Weikard, and Maxim Zinchenko, On spectral theory for Schrödinger operators with operator-valued potentials, J. Differential Equations 255 (2013), no. 7, 1784â1827. MR 3072671, DOI 10.1016/j.jde.2013.05.022
- F. Gesztesy, R. Nichols, and M. Zinchenko, SturmâLiouville Operators, Their Spectral Theory, and Some Applications, to appear in Colloquium Publications, Amer. Math. Soc.
- Richard C. Gilbert, Simplicity of linear ordinary differential operators, J. Differential Equations 11 (1972), 672â681. MR 301564, DOI 10.1016/0022-0396(72)90074-5
- Philip Hartman, Ordinary differential equations, Classics in Applied Mathematics, vol. 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition [BirkhÀuser, Boston, MA; MR0658490 (83e:34002)]; With a foreword by Peter Bates. MR 1929104, DOI 10.1137/1.9780898719222
- Philip Hartman and Aurel Wintner, On the assignment of asymptotic values for the solutions of linear differential equations of second order, Amer. J. Math. 77 (1955), 475â483. MR 70798, DOI 10.2307/2372635
- Seppo Hassi, Mark Malamud, and Vadim Mogilevskii, Unitary equivalence of proper extensions of a symmetric operator and the Weyl function, Integral Equations Operator Theory 77 (2013), no. 4, 449â487. MR 3129768, DOI 10.1007/s00020-013-2102-0
- Konrad Jörgens and Franz Rellich, Eigenwerttheorie gewöhnlicher Differentialgleichungen, Hochschultext. [University Textbooks], Springer-Verlag, Berlin-New York, 1976 (German). Ăberarbeitete und ergĂ€nzte Fassung der Vorlesungsausarbeitung âEigenwerttheorie partieller Differentialgleichungen, Teil 1â von Franz Rellich (Wintersemester 1952/53); Bearbeitet von J. Weidmann. MR 499411, DOI 10.1007/978-3-642-66132-7
- Hubert Kalf, On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strongly singular potential, J. Functional Analysis 10 (1972), 230â250. MR 348256, DOI 10.1016/0022-1236(72)90051-1
- Hubert Kalf, A characterization of the Friedrichs extension of Sturm-Liouville operators, J. London Math. Soc. (2) 17 (1978), no. 3, 511â521. MR 492493, DOI 10.1112/jlms/s2-17.3.511
- Hubert Kalf and Johann Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in $C_{0}{}^{\infty }(\textbf {R}^{n}\backslash \{0\})$, J. Functional Analysis 10 (1972), 114â130. MR 350183, DOI 10.1016/0022-1236(72)90059-6
- Erich Kamke, Differentialgleichungen, B. G. Teubner, Stuttgart, 1977 (German). Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen; Neunte Auflage; Mit einem Vorwort von Detlef Kamke. MR 466672
- Hans G. Kaper, Man Kam Kwong, and Anton Zettl, Characterizations of the Friedrichs extensions of singular Sturm-Liouville expressions, SIAM J. Math. Anal. 17 (1986), no. 4, 772â777. MR 846388, DOI 10.1137/0517056
- M. Krein, Concerning the resolvents of an Hermitian operator with the deficiency-index $(m,m)$, C. R. (Doklady) Acad. Sci. URSS (N.S.) 52 (1946), 651â654. MR 18341
- M. G. KreÄn and G. K. Langer, The defect subspaces and generalized resolvents of a Hermitian operator in the space $\Pi _{\kappa }$, Funkcional. Anal. i PriloĆŸen. 5 (1971), no. 2, 59â71 (Russian). MR 282238
- M. G. KreÄn and I. E. OvÄarenko, Inverse problems for $Q$-functions and resolvent matrices of positive Hermitian operators, Dokl. Akad. Nauk SSSR 242 (1978), no. 3, 521â524 (Russian). MR 507133
- H. Langer and B. Textorius, On generalized resolvents and $Q$-functions of symmetric linear relations (subspaces) in Hilbert space, Pacific J. Math. 72 (1977), no. 1, 135â165. MR 463964, DOI 10.2140/pjm.1977.72.135
- Marston Morse and Walter Leighton, Singular quadratic functionals, Trans. Amer. Math. Soc. 40 (1936), no. 2, 252â286. MR 1501873, DOI 10.1090/S0002-9947-1936-1501873-7
- M. M. Malamud, Some classes of extensions of a Hermitian operator with lacunae, UkraĂŻn. Mat. Zh. 44 (1992), no. 2, 215â233 (Russian, with Russian and Ukrainian summaries); English transl., Ukrainian Math. J. 44 (1992), no. 2, 190â204. MR 1184129, DOI 10.1007/BF01061743
- Mark M. Malamud and Hagen Neidhardt, On the unitary equivalence of absolutely continuous parts of self-adjoint extensions, J. Funct. Anal. 260 (2011), no. 3, 613â638. MR 2737392, DOI 10.1016/j.jfa.2010.10.021
- Mark Malamud and Hagen Neidhardt, Sturm-Liouville boundary value problems with operator potentials and unitary equivalence, J. Differential Equations 252 (2012), no. 11, 5875â5922. MR 2911417, DOI 10.1016/j.jde.2012.02.018
- M. Marletta, Eigenvalue problems on exterior domains and Dirichlet to Neumann maps, J. Comput. Appl. Math. 171 (2004), no. 1-2, 367â391. MR 2077213, DOI 10.1016/j.cam.2004.01.019
- Marco Marletta and Anton Zettl, The Friedrichs extension of singular differential operators, J. Differential Equations 160 (2000), no. 2, 404â421. MR 1736997, DOI 10.1006/jdeq.1999.3685
- Vadim Mogilevskii, Boundary triplets and Titchmarsh-Weyl functions of differential operators with arbitrary deficiency indices, Methods Funct. Anal. Topology 15 (2009), no. 3, 280â300. MR 2567312
- S. N. Naboko, On the boundary values of analytic operator-valued functions with a positive imaginary part, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 157 (1987), no. Issled. po LineÄn. Operator. i Teorii FunktsiÄ. XVI, 55â69, 179 (Russian, with English summary); English transl., J. Soviet Math. 44 (1989), no. 6, 786â795. MR 899274, DOI 10.1007/BF01463185
- S. N. Naboko, Nontangential boundary values of operator $R$-functions in a half-plane, Algebra i Analiz 1 (1989), no. 5, 197â222 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 5, 1255â1278. MR 1036844
- S. N. Naboko, The boundary behaviour of $\mathfrak {S}_p$-valued functions analytic in the half-plane with nonnegative imaginary part, Functional analysis and operator theory (Warsaw, 1992) Banach Center Publ., vol. 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 277â285. MR 1285614
- M. A. NaÄmark, Linear differential operators. Part II: Linear differential operators in Hilbert space, Frederick Ungar Publishing Co., New York, 1968. With additional material by the author, and a supplement by V. Ă. Ljance; Translated from the Russian by E. R. Dawson; English translation edited by W. N. Everitt. MR 262880
- H.-D. Niessen and A. Zettl, Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues, Proc. London Math. Soc. (3) 64 (1992), no. 3, 545â578. MR 1152997, DOI 10.1112/plms/s3-64.3.545
- Konstantin Pankrashkin, An example of unitary equivalence between self-adjoint extensions and their parameters, J. Funct. Anal. 265 (2013), no. 11, 2910â2936. MR 3096994, DOI 10.1016/j.jfa.2013.07.025
- D. B. Pearson, Quantum scattering and spectral theory, Techniques of Physics, vol. 9, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1988. MR 1099604
- Andrea Posilicano, Boundary triples and Weyl functions for singular perturbations of self-adjoint operators, Methods Funct. Anal. Topology 10 (2004), no. 2, 57â63. MR 2067952
- Franz Rellich, Die zulĂ€ssigen Randbedingungen bei den singulĂ€ren Eigenwertproblemen der mathematischen Physik. (Gewöhnliche Differentialgleichungen zweiter Ordnung.), Math. Z. 49 (1944), 702â723 (German). MR 13183, DOI 10.1007/BF01174227
- Franz Rellich, HalbbeschrĂ€nkte gewöhnliche Differentialoperatoren zweiter Ordnung, Math. Ann. 122 (1951), 343â368 (German). MR 43316, DOI 10.1007/BF01342848
- R. Rosenberger, A new characterization of the Friedrichs extension of semibounded SturmâLiouville operators, J. London Math. Soc. (2) 31 (1985), no. 3, 501â510. MR0812779
- Vladimir Ryzhov, A general boundary value problem and its Weyl function, Opuscula Math. 27 (2007), no. 2, 305â331. MR 2345962
- Ć . N. Saakjan, Theory of resolvents of a symmetric operator with infinite defect numbers, Akad. Nauk Armjan. SSR Dokl. 41 (1965), 193â198 (Russian, with Armenian summary). MR 196497
- Gerald Teschl, Mathematical methods in quantum mechanics, 2nd ed., Graduate Studies in Mathematics, vol. 157, American Mathematical Society, Providence, RI, 2014. With applications to Schrödinger operators. MR 3243083, DOI 10.1090/gsm/157
- Joachim Weidmann, Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph SzĂŒcs. MR 566954, DOI 10.1007/978-1-4612-6027-1
- Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320, DOI 10.1007/BFb0077960
- Joachim Weidmann, Lineare Operatoren in HilbertrÀumen. Teil II, Mathematische LeitfÀden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 2003 (German). Anwendungen. [Applications]. MR 2382320, DOI 10.1007/978-3-322-80095-4
- Siqin Yao, Jiong Sun, and Anton Zettl, The Sturm-Liouville Friedrichs extension, Appl. Math. 60 (2015), no. 3, 299â320. MR 3419964, DOI 10.1007/s10492-015-0097-3
- Anton Zettl, Sturm-Liouville theory, Mathematical Surveys and Monographs, vol. 121, American Mathematical Society, Providence, RI, 2005. MR 2170950, DOI 10.1090/surv/121
Bibliographic Information
- F. Gesztesy
- Affiliation: Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. $4$th Street, Waco, Texas 76706
- MR Author ID: 72880
- ORCID: 0000-0001-8554-9745
- Email: Fritz_Gesztesy@baylor.edu
- L. L. Littlejohn
- Affiliation: Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th Street, Waco, Texas 76706
- Email: Lance_Littlejohn@baylor.edu
- R. Nichols
- Affiliation: Department of Mathematics (Dept. 6956), The University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, Tennessee 37403
- MR Author ID: 947374
- Email: Roger-Nichols@utc.edu
- M. Piorkowski
- Affiliation: Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
- Email: Mateusz.Piorkowski@kuleuven.be
- J. Stanfill
- Affiliation: Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, Ohio 43210
- MR Author ID: 1420912
- ORCID: 0000-0002-4504-4942
- Email: stanfill.13@osu.edu
- Received by editor(s): July 20, 2021
- Published electronically: April 12, 2024
- Additional Notes: The third author would like to thank the U.S. National Science Foundation for summer support received under Grant DMS-1852288 in connection with REU Site: Research Training for Undergraduates in Mathematical Analysis with Applications in Allied Fields. The fourth author was supported by the Austrian Science Fund under Grant W1245, and by the Methusalen grant METH/21/03 â long term structural funding of the Flemish Government
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 101-138
- MSC (2020): Primary 34B24
- DOI: https://doi.org/10.1090/spmj/1795
Dedicated: Dedicated to Sergey Naboko (1950â2020): Friend and Mathematician Extraordinaire