Isospectral graphs via inner symmetries
HTML articles powered by AMS MathViewer
- by P. Kurasov and J. Muller;
- St. Petersburg Math. J. 35 (2024), 287-309
- DOI: https://doi.org/10.1090/spmj/1805
- Published electronically: June 21, 2024
- HTML | PDF | Request permission
Abstract:
In this paper a new class of isospectral graphs is presented. These graphs are isospectral with respect to both the normalized Laplacian on the discrete graph and the standard differential Laplacian on the corresponding metric graph. The new class of graphs is obtained by gluing together subgraphs with the Steklov maps possessing special properties. It turns out that isospectrality is related to the degeneracy of the Steklov eigenvalues.References
- László Babai, Spectra of Cayley graphs, J. Combin. Theory Ser. B 27 (1979), no. 2, 180–189. MR 546860, DOI 10.1016/0095-8956(79)90079-0
- R. Band, G. Berkolaiko, C. H. Joyner, and W. Liu, Quotients of finite-dimensional operators by symmetry representations, 2017, arxiv:1711.00918.
- Ram Band, Ori Parzanchevski, and Gilad Ben-Shach, The isospectral fruits of representation theory: quantum graphs and drums, J. Phys. A 42 (2009), no. 17, 175202, 42. MR 2539297, DOI 10.1088/1751-8113/42/17/175202
- R. Band, A. Sawicki, and U. Smilansky, Scattering from isospectral quantum graphs, J. Phys. A 43 (2010), no. 41, 415201, 17. MR 2726689, DOI 10.1088/1751-8113/43/41/415201
- F. Barra and P. Gaspard, On the level spacing distribution in quantum graphs, J. Statist. Phys. 101 (2000), no. 1-2, 283–319. Dedicated to Grégoire Nicolis on the occasion of his sixtieth birthday (Brussels, 1999). MR 1807548, DOI 10.1023/A:1026495012522
- Joachim von Below, A characteristic equation associated to an eigenvalue problem on $c^2$-networks, Linear Algebra Appl. 71 (1985), 309–325. MR 813056, DOI 10.1016/0024-3795(85)90258-7
- Gregory Berkolaiko, James B. Kennedy, Pavel Kurasov, and Delio Mugnolo, Surgery principles for the spectral analysis of quantum graphs, Trans. Amer. Math. Soc. 372 (2019), no. 7, 5153–5197. MR 4009401, DOI 10.1090/tran/7864
- Gregory Berkolaiko, James B. Kennedy, Pavel Kurasov, and Delio Mugnolo, Edge connectivity and the spectral gap of combinatorial and quantum graphs, J. Phys. A 50 (2017), no. 36, 365201, 29. MR 3688110, DOI 10.1088/1751-8121/aa8125
- Gregory Berkolaiko and Peter Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208, DOI 10.1090/surv/186
- Jan Boman and Pavel Kurasov, Symmetries of quantum graphs and the inverse scattering problem, Adv. in Appl. Math. 35 (2005), no. 1, 58–70. MR 2141505, DOI 10.1016/j.aam.2004.10.002
- Jonathan Breuer and Matthias Keller, Spectral analysis of certain spherically homogeneous graphs, Oper. Matrices 7 (2013), no. 4, 825–847. MR 3154573, DOI 10.7153/oam-07-46
- Jonathan Breuer and Netanel Levi, On the decomposition of the Laplacian on metric graphs, Ann. Henri Poincaré 21 (2020), no. 2, 499–537. MR 4056276, DOI 10.1007/s00023-019-00879-z
- Robert Brooks, Non-Sunada graphs, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 707–725 (English, with English and French summaries). MR 1697378, DOI 10.5802/aif.1688
- Steve Butler and Jason Grout, A construction of cospectral graphs for the normalized Laplacian, Electron. J. Combin. 18 (2011), no. 1, Paper 231, 20. MR 2861410, DOI 10.37236/718
- A. Chernyshenko and V. Pivovarchik, Recovering the shape of a quantum graph, Integral Equations Operator Theory 92 (2020), no. 3, Paper No. 23, 17. MR 4109187, DOI 10.1007/s00020-020-02581-w
- Fan R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. MR 1421568
- Fan Chung and Linyuan Lu, Complex graphs and networks, CBMS Regional Conference Series in Mathematics, vol. 107, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. MR 2248695, DOI 10.1090/cbms/107
- Fan R. K. Chung and Shlomo Sternberg, Laplacian and vibrational spectra for homogeneous graphs, J. Graph Theory 16 (1992), no. 6, 605–627. MR 1189051, DOI 10.1002/jgt.3190160607
- Dragoš M. Cvetković, Michael Doob, and Horst Sachs, Spectra of graphs, Pure and Applied Mathematics, vol. 87, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Theory and application. MR 572262
- Dragoš Cvetković, Peter Rowlinson, and Slobodan Simić, An introduction to the theory of graph spectra, London Mathematical Society Student Texts, vol. 75, Cambridge University Press, Cambridge, 2010. MR 2571608
- J. S. Fabla-Carrasco, P. Doyle, and P. Herbrich, Changing gears: isospectrality via eigenderivative transplantation, 2015, arxiv:1509.03549.
- Pavel Exner and Jiří Lipovský, Spectral asymptotics of the Laplacian on Platonic solids graphs, J. Math. Phys. 60 (2019), no. 12, 122101, 21. MR 4043812, DOI 10.1063/1.5116100
- J. S. Fabla-Carrasco, F. Lledo, and O. Post, Isospectral graphs via spectral bracketing, 2022, arxiv:2207.03924.
- J. S. Fabla-Carrasco, F. Lledo, and O. Post, A geometric construction of isospectral magnetic graphs, 2022, arxiv:2208.07280.
- Boris Gutkin and Uzy Smilansky, Can one hear the shape of a graph?, J. Phys. A 34 (2001), no. 31, 6061–6068. MR 1862642, DOI 10.1088/0305-4470/34/31/301
- Willem H. Haemers and Edward Spence, Enumeration of cospectral graphs, European J. Combin. 25 (2004), no. 2, 199–211. MR 2070541, DOI 10.1016/S0195-6698(03)00100-8
- Lorenz Halbeisen and Norbert Hungerbühler, Generation of isospectral graphs, J. Graph Theory 31 (1999), no. 3, 255–265. MR 1688950, DOI 10.1002/(SICI)1097-0118(199907)31:3<255::AID-JGT7>3.3.CO;2-Y
- V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires, J. Phys. A 32 (1999), no. 4, 595–630. MR 1671833, DOI 10.1088/0305-4470/32/4/006
- Pavel Kurasov, Schrödinger operators on graphs and geometry. I. Essentially bounded potentials, J. Funct. Anal. 254 (2008), no. 4, 934–953. MR 2381199, DOI 10.1016/j.jfa.2007.11.007
- Pavel Kurasov, Graph Laplacians and topology, Ark. Mat. 46 (2008), no. 1, 95–111. MR 2379686, DOI 10.1007/s11512-007-0059-4
- P. Kurasov, Surgery of graphs: $M$-function and spectral gap, Acta Phys. Pol. A 132 (2017), no. 6, 1666–1671.
- P. Kurasov, Spectral geometry of graphs, Oper. Theory Adv. Appl., vol. 293, Birkhäuser, Berlin, 2024.
- P. Kurasov, G. Malenová, and S. Naboko, Spectral gap for quantum graphs and their edge connectivity, J. Phys. A 46 (2013), no. 27, 275309, 16. MR 3081922, DOI 10.1088/1751-8113/46/27/275309
- Pavel Kurasov and Marlena Nowaczyk, Inverse spectral problem for quantum graphs, J. Phys. A 38 (2005), no. 22, 4901–4915. MR 2148632, DOI 10.1088/0305-4470/38/22/014
- Pavel Kurasov and Sergei Naboko, Gluing graphs and the spectral gap: a Titchmarsh-Weyl matrix-valued function approach, Studia Math. 255 (2020), no. 3, 303–326. MR 4142756, DOI 10.4064/sm190322-4-11
- P. Kurasov and P. Sarnak, Stable polynomials and crystalline measures, J. Math. Phys. 61 (2020), no. 8, 083501, 13. MR 4129870, DOI 10.1063/5.0012286
- P. Kurasov and F. Stenberg, On the inverse scattering problem on branching graphs, J. Phys. A 35 (2002), no. 1, 101–121. MR 1891815, DOI 10.1088/0305-4470/35/1/309
- Alexander Lubotzky, Beth Samuels, and Uzi Vishne, Isospectral Cayley graphs of some finite simple groups, Duke Math. J. 135 (2006), no. 2, 381–393. MR 2267288, DOI 10.1215/S0012-7094-06-13526-3
- Konstantin Pankrashkin, Unitary dimension reduction for a class of self-adjoint extensions with applications to graph-like structures, J. Math. Anal. Appl. 396 (2012), no. 2, 640–655. MR 2961258, DOI 10.1016/j.jmaa.2012.07.005
- Idan Oren and Ram Band, Isospectral graphs with identical nodal counts, J. Phys. A 45 (2012), no. 13, 135203, 12. MR 2904748, DOI 10.1088/1751-8113/45/13/135203
- M.-E. Pistol, Generating isospectral but not isomorphic quantum graphs, 2022, arxiv:2104.12885v4.
- J. J. Seidel, Strongly regular graphs of $L_{2}$-type and of triangular type, Indag. Math. 29 (1967), 188–196. Nederl. Akad. Wetensch. Proc. Ser. A 70. MR 209185, DOI 10.1016/S1385-7258(67)50031-8
- Toshikazu Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), no. 1, 169–186. MR 782558, DOI 10.2307/1971195
Bibliographic Information
- P. Kurasov
- Affiliation: Stockholm University, SE-10691, Stockholm, Sweden
- MR Author ID: 265224
- ORCID: 0000-0003-3256-6968
- Email: kurasov@math.su.se
- J. Muller
- Affiliation: Stockholm University, SE-10691, Stockholm, Sweden
- Email: muller@math.su.se
- Received by editor(s): September 17, 2022
- Published electronically: June 21, 2024
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 287-309
- MSC (2020): Primary 35R02; Secondary 47F10
- DOI: https://doi.org/10.1090/spmj/1805
Dedicated: This work is dedicated to the memory of Sergey Naboko — an outstanding mathematician, an attentive teacher, a kind friend and a great man, who left us too early