Around the Gauss theorem on the values of Euler’s digamma function at rational points
HTML articles powered by AMS MathViewer
- by
K. A. Mirzoev and T. A. Safonova;
Translated by: S. V. Kislyakov - St. Petersburg Math. J. 35 (2024), 311-325
- DOI: https://doi.org/10.1090/spmj/1806
- Published electronically: June 21, 2024
- HTML | PDF | Request permission
Abstract:
The paper is devoted to new representations of generating functions for the values of the Riemann zeta function at odd points and for certain related numbers in terms of integrals of trigonometric functions depending on a parameter $a$. In particular, new integral representations for the Euler digamma function $\psi (a)$ are obtained. The resulting integrals can be calculated in terms of the hypergeometric series ${}_3F_{2}$ and ${}_4F_{3}$ for some values of the parameters and $z=1$. Moreover, if $a$ is a proper rational fraction, then the integrals in question can be reduced to integrals of $R(\sin x, \cos x)$, where $R$ is a rational function of two variables, and are calculated explicitly. In this case, various analogs of the Gauss theorem on the values of the function $\psi (a)$ at rational points (and also yet another proof of that theorem) are obtained.References
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 58756
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integraly i ryady. Tom 1, Second revised edition, Fiziko-Matematicheskaya Literatura, Moscow, 2003 (Russian). Èlementarnye funktsii. [Elementary functions]. MR 2123874
- I. S. Gradšteĭn and I. M. Ryžik, Tablitsy integralov, summ, ryadov i proizvedeniĭ, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 161996
- Bruce C. Berndt, Ramanujan’s notebooks. Part I, Springer-Verlag, New York, 1985. With a foreword by S. Chandrasekhar. MR 781125, DOI 10.1007/978-1-4612-1088-7
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Junesang Choi and Djurdje Cvijović, Values of the polygamma functions at rational arguments, J. Phys. A 40 (2007), no. 50, 15019–15028. MR 2442610, DOI 10.1088/1751-8113/40/50/007
- K. A. Mirzoev and T. A. Safonova, Green’s function of ordinary differential operators and an integral representation of sums of certain power series, Dokl. Math. 98 (2018), no. 2, 486–489. Translated from Dokl. Akad. Nauk 482 (2018), No. 5. MR 4422661, DOI 10.1134/s1064562418060236
- K. A. Mirzoev and T. A. Safonova, Ordinary differential operators and the integral representation of sums of certain power series, Trans. Moscow Math. Soc. 80 (2019), 133–151. MR 4082865, DOI 10.1090/mosc/294
- K. A. Mirzoev and T. A. Safonova, Integral representation of sums of series associated with special functions, Mat. Zametki 108 (2020), no. 4, 632–637 (Russian); English transl., Math. Notes 108 (2020), no. 3-4, 617–622. MR 4153696, DOI 10.4213/mzm12752
- T. J. I’A. Bromwich, An introduction to the theory of infinite series, $2$nd ed., MacMillan, London, 1926.
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- N. N. Osipov, On the calculation of finite trigonometric sums, Mat. Prosv. Ser. 3 2019, vyp. 23, 174–208. (Russian)
- Bruce C. Berndt and Alexandru Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), no. 3, 551–575. MR 2099193, DOI 10.1007/s00208-004-0559-5
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integraly i ryady. Tom 3, Second revised edition, Fiziko-Matematicheskaya Literatura, Moscow, 2003 (Russian). Spetsial′nye funktsii. [Special functions]; Dopolnitel′nye glavy. [Supplementary chapters]. MR 2123876
- Tom M. Apostol, Another elementary proof of Euler’s formula for $\zeta (2n)$, Amer. Math. Monthly 80 (1973), 425–431. MR 314780, DOI 10.2307/2319093
- Djurdje Cvijović and Hari M. Srivastava, Limit representations of Riemann’s zeta function, Amer. Math. Monthly 119 (2012), no. 4, 324–330. MR 2900978, DOI 10.4169/amer.math.monthly.119.04.324
Bibliographic Information
- K. A. Mirzoev
- Affiliation: Department of Mechanics and Mathematics, Lomonosov Moscow State University; Moscow Center of Basic and Applied Mathematics, Leninskie gory 1, 119991 Moscow, Russia
- Email: mirzoev.karahan@mail.ru
- T. A. Safonova
- Affiliation: Lomonosov Nothern (Arctic) Federal University; Moscow Center of Basic and Applied Mathematics, Nothern Dvina Quay 17, 163002 Arkhangelsk, Russia
- Email: t.Safonova@narfu.ru
- Received by editor(s): June 15, 2022
- Published electronically: June 21, 2024
- Additional Notes: This work was done under support of RSCF (grant no. 20-11-20261)
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 311-325
- MSC (2020): Primary 33B15; Secondary 33C20
- DOI: https://doi.org/10.1090/spmj/1806
Dedicated: Dedicated to the lucid memory of Sergey Nikolaevich Naboko