Local invariants of noncommutative tori
HTML articles powered by AMS MathViewer
- by F. Sukochev and D. Zanin;
- St. Petersburg Math. J. 35 (2024), 377-415
- DOI: https://doi.org/10.1090/spmj/1808
- Published electronically: June 21, 2024
- HTML | PDF | Request permission
Abstract:
The notion of a generic curved noncommutative torus is considered, which extends the notion of a conformally deformed noncommutative torus introduced by Connes and Tretkoff. For this manifold, an asymptotic expansion is established for the heat semigroup generated by the Laplace–Beltrami operator (in fact, for an arbitrary selfadjoint positive elliptic differential operator of order $2$) and an algorithm is provided to compute the local invariants that arize as the coefficients in the expansion. This allows one to extend a series of previous results by several authors beyond the conformal case and/or for multidimensional tori.References
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- A. Connes, The action functional in noncommutative geometry, Comm. Math. Phys. 117 (1988), no. 4, 673–683. MR 953826, DOI 10.1007/BF01218391
- Alain Connes, $C^{\ast }$ algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599–A604 (French, with English summary). MR 572645
- Alain Connes and Farzad Fathizadeh, The term $a_4$ in the heat kernel expansion of noncommutative tori, Münster J. Math. 12 (2019), no. 2, 239–410. MR 4030920, DOI 10.17879/53149724705
- Alain Connes and Henri Moscovici, Modular curvature for noncommutative two-tori, J. Amer. Math. Soc. 27 (2014), no. 3, 639–684. MR 3194491, DOI 10.1090/S0894-0347-2014-00793-1
- A. Konn, F. A. Sukochev, and D. V. Zanin, Trace theorem for quasi-Fuchsian groups, Mat. Sb. 208 (2017), no. 10, 59–90 (Russian, with Russian summary); English transl., Sb. Math. 208 (2017), no. 10, 1473–1502. MR 3706885, DOI 10.4213/sm8794
- Alain Connes and Paula Tretkoff, The Gauss-Bonnet theorem for the noncommutative two torus, Noncommutative geometry, arithmetic, and related topics, Johns Hopkins Univ. Press, Baltimore, MD, 2011, pp. 141–158. MR 2907006
- Ludwik Dąbrowski and Andrzej Sitarz, Curved noncommutative torus and Gauss-Bonnet, J. Math. Phys. 54 (2013), no. 1, 013518, 11. MR 3059906, DOI 10.1063/1.4776202
- MichałEckstein and Bruno Iochum, Spectral action in noncommutative geometry, SpringerBriefs in Mathematical Physics, vol. 27, Springer, Cham, 2018. MR 3887635, DOI 10.1007/978-3-319-94788-4
- Farzad Fathizadeh, On the scalar curvature for the noncommutative four torus, J. Math. Phys. 56 (2015), no. 6, 062303, 14. MR 3369894, DOI 10.1063/1.4922815
- Farzad Fathizadeh and Masoud Khalkhali, Scalar curvature for the noncommutative two torus, J. Noncommut. Geom. 7 (2013), no. 4, 1145–1183. MR 3148618, DOI 10.4171/JNCG/145
- Farzad Fathizadeh and Masoud Khalkhali, Scalar curvature for noncommutative four-tori, J. Noncommut. Geom. 9 (2015), no. 2, 473–503. MR 3359018, DOI 10.4171/JNCG/198
- Remus Floricel, Asghar Ghorbanpour, and Masoud Khalkhali, The Ricci curvature in noncommutative geometry, J. Noncommut. Geom. 13 (2019), no. 1, 269–296. MR 3941480, DOI 10.4171/JNCG/324
- Hyunsu Ha and Raphaël Ponge, Laplace-Beltrami operators on noncommutative tori, J. Geom. Phys. 150 (2020), 103594, 25. MR 4053121, DOI 10.1016/j.geomphys.2019.103594
- Tuomas Hytönen, Jan van Neerven, Mark Veraar, and Lutz Weis, Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 63, Springer, Cham, 2016. MR 3617205, DOI 10.1007/978-3-319-48520-1
- B. Iochum and T. Masson, Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori, J. Geom. Phys. 129 (2018), 1–24. MR 3789232, DOI 10.1016/j.geomphys.2018.02.014
- B. Iochum and T. Masson, Heat coefficient $a_4$ for non minimal Laplace type operators, J. Geom. Phys. 141 (2019), 120–146. MR 3936770, DOI 10.1016/j.geomphys.2019.03.002
- Matthias Lesch, Divided differences in noncommutative geometry: rearrangement lemma, functional calculus and expansional formula, J. Noncommut. Geom. 11 (2017), no. 1, 193–223. MR 3626561, DOI 10.4171/JNCG/11-1-6
- Matthias Lesch and Henri Moscovici, Modular curvature and Morita equivalence, Geom. Funct. Anal. 26 (2016), no. 3, 818–873. MR 3540454, DOI 10.1007/s00039-016-0375-6
- Gihyun Lee and Raphaël Ponge, Functional calculus for elliptic operators on noncommutative tori, I, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 3, 935–1004. MR 4130220, DOI 10.1007/s11868-020-00337-z
- Yang Liu, Modular curvature for toric noncommutative manifolds, J. Noncommut. Geom. 12 (2018), no. 2, 511–575. MR 3825195, DOI 10.4171/JNCG/285
- Yang Liu, Scalar curvature in conformal geometry of Connes-Landi noncommutative manifolds, J. Geom. Phys. 121 (2017), 138–165. MR 3705386, DOI 10.1016/j.geomphys.2017.07.012
- Steven Lord, Fedor Sukochev, and Dmitriy Zanin, Singular traces, De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin, 2013. Theory and applications. MR 3099777
- Edward McDonald and Raphaël Ponge, Dixmier trace formulas and negative eigenvalues of Schrödinger operators on curved noncommutative tori, Adv. Math. 412 (2023), Paper No. 108815, 57. MR 4521698, DOI 10.1016/j.aim.2022.108815
- Hyunsu Ha, Gihyun Lee, and Raphaël Ponge, Pseudodifferential calculus on noncommutative tori, I. Oscillating integrals, Internat. J. Math. 30 (2019), no. 8, 1950033, 74. MR 3985230, DOI 10.1142/S0129167X19500332
- Hyunsu Ha, Gihyun Lee, and Raphaël Ponge, Pseudodifferential calculus on noncommutative tori, II. Main properties, Internat. J. Math. 30 (2019), no. 8, 1950034, 73. MR 3985231, DOI 10.1142/S0129167X19500344
- Marc A. Rieffel, Deformation quantization for actions of $\textbf {R}^d$, Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93. MR 1184061, DOI 10.1090/memo/0506
- Jonathan Rosenberg, Levi-Civita’s theorem for noncommutative tori, SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), Paper 071, 9. MR 3141539, DOI 10.3842/SIGMA.2013.071
- Steven Rosenberg, The Laplacian on a Riemannian manifold, London Mathematical Society Student Texts, vol. 31, Cambridge University Press, Cambridge, 1997. An introduction to analysis on manifolds. MR 1462892, DOI 10.1017/CBO9780511623783
- M. Spera, Sobolev theory for noncommutative tori, Rend. Sem. Mat. Univ. Padova 86 (1992), 143–156. MR1154104
- F. Sukochev and D. Zanin, Fubini theorem in noncommutative geometry, J. Funct. Anal. 272 (2017), no. 3, 1230–1264. MR 3579138, DOI 10.1016/j.jfa.2016.10.016
- F. Sukochev and D. Zanin, The Connes character formula for locally compact spectral triples, arXiv:1803.01551; Asterisque, 445 (2023), 150 pp.
- T. van Nuland, F. Sukochev, and D. Zanin, Local invariants of conformally deformed noncommutative tori II. Multiple operator integrals. (manuscript in preparation)
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
- Xiao Xiong, Quanhua Xu, and Zhi Yin, Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori, Mem. Amer. Math. Soc. 252 (2018), no. 1203, vi+118. MR 3778570, DOI 10.1090/memo/1203
Bibliographic Information
- F. Sukochev
- Affiliation: University of New South Wales, Kensington, NSW, 2052, Australia; North-Ossetian State University, Vladikavkaz 362025, Russia
- MR Author ID: 229620
- Email: f.sukochev@unsw.edu.au
- D. Zanin
- Affiliation: University of New South Wales, Kensington, NSW, 2052, Australia
- MR Author ID: 752894
- Email: d.zanin@unsw.edu.au
- Received by editor(s): June 4, 2021
- Published electronically: June 21, 2024
- Additional Notes: This research is supported by the Ministry of Science and Higher Education of Russian Federation (agreement no. 075-02-2023-939). F. Sukochev’s research is supported by the Australian Research Council (FL170100052).
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 377-415
- MSC (2020): Primary 46L87, 58B34
- DOI: https://doi.org/10.1090/spmj/1808