Groups with $\mathsf A_\ell$-commutator relations
HTML articles powered by AMS MathViewer
- by
E. Voronetsky;
Translated by: the author - St. Petersburg Math. J. 35 (2024), 433-443
- DOI: https://doi.org/10.1090/spmj/1810
- Published electronically: July 30, 2024
- HTML | PDF | Request permission
Abstract:
If $A$ is a unital associative ring and $\ell \geq 2$, then the general linear group $\operatorname {GL}(\ell , A)$ has root subgroups $U_\alpha$ and Weyl elements $n_\alpha$ for $\alpha$ from the root system of type $\mathsf A_{\ell - 1}$. Conversely, if an arbitrary group has such root subgroups and Weyl elements for $\ell \geq 4$ satisfying natural conditions, then there is a way to recover the ring $A$. A generalization of this result not involving the Weyl elements is proved, so instead of the matrix ring $\operatorname {M}(\ell , A),$ a nonunital associative ring with a well-behaved Peirce decomposition is provided.References
- Pierre-Emmanuel Caprace and Bertrand Rémy, Groups with a root group datum, Innov. Incidence Geom. 9 (2009), 5–77. MR 2658894, DOI 10.2140/iig.2009.9.5
- José Luis García and Leandro Marín, Some properties of tensor-idempotent rings, Algebra and its applications (Athens, OH, 1999) Contemp. Math., vol. 259, Amer. Math. Soc., Providence, RI, 2000, pp. 223–235. MR 1780523, DOI 10.1090/conm/259/04097
- Alexander J. Hahn and O. Timothy O’Meara, The classical groups and $K$-theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989. With a foreword by J. Dieudonné. MR 1007302, DOI 10.1007/978-3-662-13152-7
- Ottmar Loos and Erhard Neher, Steinberg groups for Jordan pairs, Progress in Mathematics, vol. 332, Birkhäuser/Springer, New York, [2019] ©2019. MR 3972173, DOI 10.1007/978-1-0716-0264-5
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1971. MR 349811
- Patrik Nystedt, A survey of s-unital and locally unital rings, Rev. Integr. Temas Mat. 37 (2019), no. 2, 251–260 (English, with English and Spanish summaries). MR 3997063, DOI 10.18273/revint.v37n2-2019003
- D. Quillen, Module theory for nonunital rings, 1996 (unpublished).
- Franz Georg Timmesfeld, Abstract root subgroups and simple groups of Lie type, Monographs in Mathematics, vol. 95, Birkhäuser Verlag, Basel, 2001. MR 1852057, DOI 10.1007/978-3-0348-7594-3
- Egor Voronetsky, Centrality of $\rm K_2$-functor revisited, J. Pure Appl. Algebra 225 (2021), no. 4, Paper No. 106547, 14. MR 4145632, DOI 10.1016/j.jpaa.2020.106547
- Zhiyong Shi, Groups graded by finite root systems, Tohoku Math. J. (2) 45 (1993), no. 1, 89–108. MR 1200882, DOI 10.2748/tmj/1178225956
Bibliographic Information
- E. Voronetsky
- Affiliation: Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O., 29B, St. Petersburg 199178, Russia
- Email: voronetckiiegor@yandex.ru
- Received by editor(s): April 18, 2022
- Published electronically: July 30, 2024
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 433-443
- MSC (2020): Primary 19C30
- DOI: https://doi.org/10.1090/spmj/1810