Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Threshold approximations for the exponential of a factorized operator family with correctors taken into account
HTML articles powered by AMS MathViewer

by T. A. Suslina;
Translated by: T. A. Suslina
St. Petersburg Math. J. 35 (2024), 537-570
DOI: https://doi.org/10.1090/spmj/1816
Published electronically: July 30, 2024

Abstract:

In a Hilbert space $\mathfrak H$, consider a family of selfadjoint operators (a quadratic operator pencil) $A(t)$, $t\in \mathbb {R}$, of the form $A(t) = X(t)^* X(t)$, where $X(t) = X_0 + t X_1$. It is assumed that the point $\lambda _0=0$ is an isolated eigenvalue of finite multiplicity for the operator $A(0)$. Let $F(t)$ be the spectral projection of the operator $A(t)$ for the interval $[0,\delta ]$. Approximations for $F(t)$ and $A(t)F(t)$ for $|t| \leq t_0$ (the so-called threshold approximations) are used to obtain approximations in the operator norm on $\mathfrak H$ for the operator exponential $\exp (-i \tau A(t))$, $\tau \in \mathbb {R}$. The numbers $\delta$ and $t_0$ are controlled explicitly. Next, the behavior for small $\varepsilon >0$ of the operator $\exp (-i \varepsilon ^{-2} \tau A(t))$ multiplied by the “smoothing factor” $\varepsilon ^s (t^2 + \varepsilon ^2)^{-s/2}$ with a suitable $s>0$ is studied. The obtained approximations are given in terms of the spectral characteristics of the operator $A(t)$ near the lower edge of the spectrum. The results are aimed at application to homogenization of the Schrödinger-type equations with periodic rapidly oscillating coefficients.
References
  • M. Sh. Birman and T. A. Suslina, Periodic second-order differential operators. Threshold properties and averaging, Algebra i Analiz 15 (2003), no. 5, 1–108 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 5, 639–714. MR 2068790, DOI 10.1090/S1061-0022-04-00827-1
  • M. Sh. Birman and T. A. Suslina, Threshold approximations for the resolvent of a factorized selfadjoint family taking a corrector into account, Algebra i Analiz 17 (2005), no. 5, 69–90 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 5, 745–762. MR 2241423, DOI 10.1090/S1061-0022-06-00927-7
  • M. Sh. Birman and T. A. Suslina, Averaging of periodic elliptic differential operators taking a corrector into account, Algebra i Analiz 17 (2005), no. 6, 1–104 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 6, 897–973. MR 2202045, DOI 10.1090/S1061-0022-06-00935-6
  • M. Sh. Birman and T. A. Suslina, Averaging of periodic differential operators taking a corrector into account. Approximation of solutions in the Sobolev class $H^2(\Bbb R^d)$, Algebra i Analiz 18 (2006), no. 6, 1–130 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 18 (2007), no. 6, 857–955. MR 2307356, DOI 10.1090/S1061-0022-07-00977-6
  • M. Sh. Birman and T. A. Suslina, Operator error estimates for the averaging of nonstationary periodic equations, Algebra i Analiz 20 (2008), no. 6, 30–107 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 20 (2009), no. 6, 873–928. MR 2530894, DOI 10.1090/S1061-0022-09-01077-2
  • E. S. Vasilevskaya, Homogenization of a parabolic Cauchy problem with periodic coefficients taking the corrector into account, Algebra i Analiz 21 (2009), no. 1, 3–60 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 21 (2010), no. 1, 1–41. MR 2553050, DOI 10.1090/S1061-0022-09-01083-8
  • E. S. Vasilevskaya and T. A. Suslina, Threshold approximations of a factorized selfadjoint operator family taking into account the first and second correctors, Algebra i Analiz 23 (2011), no. 2, 102–146 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 23 (2012), no. 2, 275–308. MR 2841674, DOI 10.1090/S1061-0022-2012-01197-0
  • M. A. Dorodnyi, Operator error estimates for homogenization of the nonstationary Schrödinger-type equations: sharpness of the results, Appl. Anal. 101 (2022), no. 16, 5582–5614. MR 4484681, DOI 10.1080/00036811.2021.1901886
  • M. A. Dorodnyi and T. A. Suslina, Spectral approach to homogenization of hyperbolic equations with periodic coefficients, J. Differential Equations 264 (2018), no. 12, 7463–7522. MR 3779643, DOI 10.1016/j.jde.2018.02.023
  • M. A. Dorodnyĭ and T. A. Suslina, Homogenization of hyperbolic equations with periodic coefficients in ${\Bbb R}^d$: sharpness of the results, Algebra i Analiz 32 (2020), no. 4, 3–136 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 32 (2021), no. 4, 605–703. MR 4167863, DOI 10.1090/spmj/1664
  • Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 407617
  • Yu. M. Meshkova, On the homogenization of periodic hyperbolic systems, Mat. Zametki 105 (2019), no. 6, 937–942 (Russian); English transl., Math. Notes 105 (2019), no. 5-6, 929–934. MR 3954323, DOI 10.4213/mzm12404
  • Yulia M. Meshkova, On operator error estimates for homogenization of hyperbolic systems with periodic coefficients, J. Spectr. Theory 11 (2021), no. 2, 587–660. MR 4293487, DOI 10.4171/jst/350
  • T. A. Suslina, On the averaging of periodic parabolic systems, Funktsional. Anal. i Prilozhen. 38 (2004), no. 4, 86–90 (Russian); English transl., Funct. Anal. Appl. 38 (2004), no. 4, 309–312. MR 2117512, DOI 10.1007/s10688-005-0010-z
  • T. A. Suslina, Homogenization of a periodic parabolic Cauchy problem, Nonlinear equations and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 220, Amer. Math. Soc., Providence, RI, 2007, pp. 201–233. MR 2343612, DOI 10.1090/trans2/220/09
  • T. Suslina, Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\Bbb R^d)$, Math. Model. Nat. Phenom. 5 (2010), no. 4, 390–447. MR 2662463, DOI 10.1051/mmnp/20105416
  • Tatiana Suslina, Spectral approach to homogenization of nonstationary Schrödinger-type equations, J. Math. Anal. Appl. 446 (2017), no. 2, 1466–1523. MR 3563045, DOI 10.1016/j.jmaa.2016.09.037
  • T. A. Suslina, Homogenization of the Schrödinger-type equations: operator estimates with correctors, Funct. Anal. Appl. 56 (2022), no. 3, 229–234. Translation of Funktsional. Anal. i Prilozhen. 56 (2022), no. 3, 93–99. MR 4542842, DOI 10.1134/S0016266322030078
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 35B27
  • Retrieve articles in all journals with MSC (2020): 35B27
Bibliographic Information
  • T. A. Suslina
  • Affiliation: St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
  • Email: t.suslina@spbu.ru
  • Received by editor(s): January 7, 2023
  • Published electronically: July 30, 2024
  • Additional Notes: Supported by Russian Science Foundation (project 22-11-00092).
  • © Copyright 2024 American Mathematical Society
  • Journal: St. Petersburg Math. J. 35 (2024), 537-570
  • MSC (2020): Primary 35B27
  • DOI: https://doi.org/10.1090/spmj/1816