Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Order-boundary characterization of the linear lattice of Riemann $\mu$-integrable functions as a certain completion of the linear lattice of bounded continuous functions
HTML articles powered by AMS MathViewer

by V. K. Zakharov;
Translated by: S. V. Kislyakov
St. Petersburg Math. J. 35 (2024), 697-718
DOI: https://doi.org/10.1090/spmj/1822
Published electronically: October 4, 2024

Abstract:

The linear lattice of Riemann $\mu$-integrable functions on a completely regular space with a bounded positive Radon measure $\mu$ is viewed as an extension of the linear lattice of bounded continuous functions. To characterize this Riemann extension, the new functional analysis category of $c$-latlineals with refinements ($\equiv cr$-latlineals) is introduced. On this basis, the procedure of $cr$-completion of certain order-boundary type is defined. The $\mu$-Riemann extension is shown to be the result of applying this procedure to the $cr_{\mu }$-latlineal of bounded continuous functions.
References
  • V. K. Zakharov, A relation between the classical ring of quotients of the ring of continuous functions and Riemann-integrable functions, Fundam. Prikl. Mat. 1 (1995), no. 1, 161–176 (Russian, with English and Russian summaries). MR 1789357
  • V. K. Zakharov, Connections between the Riemann extension and the classical quotient ring and between the Semadeni preimage and the sequential absolute, Tr. Mosk. Mat. Obs. 57 (1996), 239–262 (Russian); English transl., Trans. Moscow Math. Soc. (1996), 223–243 (1997). MR 1468983
  • V. K. Zakharov and A. A. SeredinskiÄ­, A new characterization of the Riemann integral and of Riemann-integrable functions, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (2006), 16–23, 70 (Russian, with Russian summary); English transl., Moscow Univ. Math. Bull. 61 (2006), no. 2, 16–23. MR 2369763
  • V. K. Zakharov and A. A. SeredinskiÄ­, A new characterization of Riemann-integrable functions, Fundam. Prikl. Mat. 10 (2004), no. 3, 73–83 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 139 (2006), no. 4, 6708–6714. MR 2123344, DOI 10.1007/s10958-006-0385-2
  • V. K. Zakharov, Classical extensions of a vector lattice of continuous functions, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1990), 15–18, 103 (Russian); English transl., Moscow Univ. Math. Bull. 45 (1990), no. 4, 16–18. MR 1086600
  • V. K. Zakharov, A description of some extensions of a family of continuous functions by means of order boundaries, Dokl. Akad. Nauk 400 (2005), no. 4, 444–448 (Russian). MR 2159577
  • Valeriy K. Zakharov, Timofey V. Rodionov, and Alexander V. Mikhalev, Sets, functions, measures. Vol. II, De Gruyter Studies in Mathematics, vol. 68/2, De Gruyter, Berlin, 2018. Fundamentals of functions and measure theory. MR 3793603, DOI 10.1515/9783110550962
  • Valeriy K. Zakharov and Timofey V. Rodionov, Sets, functions, measures. Vol. I, De Gruyter Studies in Mathematics, vol. 68/1, De Gruyter, Berlin, 2018. Fundamentals of set and number theory. MR 3823240, DOI 10.1515/9783110550948
  • N. Bourbaki, ÉlĂ©ments de mathĂ©matique. Fasc. XXI. Livre VI: IntĂ©gration. Chapitre V: IntĂ©gration des mesures, ActualitĂ©s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1244, Hermann, Paris, 1967 (French). Deuxième Ă©dition revue et corrigĂ©e. MR 209424
  • Mark Krein and Selim Krein, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 427–430. MR 3453
  • Shizuo Kakutani, Concrete representation of abstract $(M)$-spaces. (A characterization of the space of continuous functions.), Ann. of Math. (2) 42 (1941), 994–1024. MR 5778, DOI 10.2307/1968778
  • V. K. Zakharov, The countably divisible extension and the Baire extension of the ring and the Banach algebra of continuous functions as a divisible hull, Algebra i Analiz 5 (1993), no. 6, 121–138 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 5 (1994), no. 6, 1141–1156. MR 1270065
  • A. D. Alexandroff, Additive set-functions in abstract spaces, Rec. Math. [Mat. Sbornik] N.S. 8(50) (1940), 307–348 (English, with Russian summary). MR 4078
  • Nicolas Bourbaki, ÉlĂ©ments de mathĂ©matique. Fasc. II. Livre III: Topologie gĂ©nĂ©rale. Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes, ActualitĂ©s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1142, Hermann, Paris, 1965 (French). Quatrième Ă©dition. MR 244924
  • Valerij Zaharov, Functional characterization of absolute and Dedekind completion, Bull. Acad. Polon. Sci. SĂ©r. Sci. Math. 29 (1981), no. 5-6, 293–297 (English, with Russian summary). MR 640475
  • P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obshchuyu topologiyu, Izdat. “Nauka”, Moscow, 1977 (Russian). With the collaboration of V. I. ZaÄ­cev and V. V. FedorÄŤuk. MR 487937
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 46A40, 28C15
  • Retrieve articles in all journals with MSC (2020): 46A40, 28C15
Bibliographic Information
  • V. K. Zakharov
  • Affiliation: Moscow State University, Leninskie gory 1, Moscow 119991, Russia
  • Email: zakharov_valeriy@list.ru
  • Received by editor(s): April 10, 2021
  • Published electronically: October 4, 2024
  • © Copyright 2024 American Mathematical Society
  • Journal: St. Petersburg Math. J. 35 (2024), 697-718
  • MSC (2020): Primary 46A40; Secondary 28C15
  • DOI: https://doi.org/10.1090/spmj/1822