On Fourier multipliers with rapidly oscillating symbols
HTML articles powered by AMS MathViewer
- by
D. Stolyarov;
Translated by: the author - St. Petersburg Math. J. 35 (2024), 719-729
- DOI: https://doi.org/10.1090/spmj/1823
- Published electronically: October 4, 2024
- HTML | PDF | Request permission
Abstract:
Asymptotically sharp bounds are provided for the $L_p$ norms of the Fourier multipliers with symbols $e^{i\lambda \varphi (\xi /|\xi |)}$, where $\lambda \in \mathbb {R}$ is a large parameter.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 482275, DOI 10.1007/978-3-642-66451-9
- Aleksandar Bulj and Vjekoslav Kovač, Asymptotic behavior of $\mathrm {L}^p$ estimates for a class of multipliers with homogeneous unimodular symbols, Trans. Amer. Math. Soc. 376 (2023), no. 7, 4539–4567. MR 4608424, DOI 10.1090/tran/8883
- Oliver Dragičević, Stefanie Petermichl, and Alexander Volberg, A rotation method which gives linear $L^p$ estimates for powers of the Ahlfors-Beurling operator, J. Math. Pures Appl. (9) 86 (2006), no. 6, 492–509 (English, with English and French summaries). MR 2281449, DOI 10.1016/j.matpur.2006.10.005
- C. Fefferman, N. M. Rivière, and Y. Sagher, Interpolation between $H^{p}$ spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75–81. MR 388072, DOI 10.1090/S0002-9947-1974-0388072-3
- Vladimir Maz’ya, Seventy five (thousand) unsolved problems in analysis and partial differential equations, Integral Equations Operator Theory 90 (2018), no. 2, Paper No. 25, 44. MR 3795177, DOI 10.1007/s00020-018-2460-8
- Andreas Seeger, A limit case of the Hörmander multiplier theorem, Monatsh. Math. 105 (1988), no. 2, 151–160. MR 930433, DOI 10.1007/BF01501167
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- V. G. Maz′ja and Ju. E. Haĭkin, The continuity of singular integral operators in normed spaces, Vestnik Leningrad. Univ. 1, Mat. Meh. Astronom. vyp. 1 (1976), 28–34, 160 (Russian, with English summary). MR 636405
Bibliographic Information
- D. Stolyarov
- Affiliation: St. Petersburg State University, St. Petersburg, Russia
- MR Author ID: 895114
- Email: d.m.stolyarov@spbu.ru
- Received by editor(s): October 18, 2022
- Published electronically: October 4, 2024
- Additional Notes: Supported by the Russian Science Foundation grant 19-71-30002.
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 719-729
- MSC (2020): Primary 60G46; Secondary 46E35
- DOI: https://doi.org/10.1090/spmj/1823