The Fokker–Planck–Kolmogorov equation with nonlinear terms of local and nonlocal type
HTML articles powered by AMS MathViewer
- by
V. I. Bogachev, D. I. Salakhov and S. V. Shaposhnikov;
Translated by: V. I. Bogachev - St. Petersburg Math. J. 35 (2024), 749-767
- DOI: https://doi.org/10.1090/spmj/1826
- Published electronically: December 3, 2024
- HTML | PDF | Request permission
Abstract:
Nonlinear Fokker–Planck–Kolmogorov equations are investigated. Sufficient conditions are obtained for the existence and uniqueness of a nonnegative solution with a prescribed value of the integral. Convergence of solutions for the Cauchy problem to a solution of the stationary equation is shown. An important distinction from the known results is a very general form of the nonlinearity, which makes it possible to consider simultaneously a local and nonlocal dependence of coefficients on solutions.References
- N. U. Ahmed and Xinhong Ding, On invariant measures of nonlinear Markov processes, J. Appl. Math. Stochastic Anal. 6 (1993), no. 4, 385–406. MR 1255258, DOI 10.1155/S1048953393000310
- Viorel Barbu and Michael Röckner, Probabilistic representation for solutions to nonlinear Fokker-Planck equations, SIAM J. Math. Anal. 50 (2018), no. 4, 4246–4260. MR 3835244, DOI 10.1137/17M1162780
- Viorel Barbu and Michael Röckner, Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), no. 3, 702–713. MR 4297237, DOI 10.1007/s40072-020-00181-8
- Viorel Barbu and Michael Röckner, The evolution to equilibrium of solutions to nonlinear Fokker-Planck equation, Indiana Univ. Math. J. 72 (2023), no. 1, 89–131. MR 4557070, DOI 10.1512/iumj.2023.72.9074
- Ya. I. Belopol′skaya, Systems of nonlinear backward and forward Kolmogorov equations, generalized solutions, Teor. Veroyatn. Primen. 66 (2021), no. 1, 20–54 (Russian, with Russian summary); English transl., Theory Probab. Appl. 66 (2021), no. 1, 15–43. MR 4213087, DOI 10.4213/tvp52
- Vladimir I. Bogachev, Michael Röckner, and Stanislav V. Shaposhnikov, On the Ambrosio-Figalli-Trevisan superposition principle for probability solutions to Fokker-Planck-Kolmogorov equations, J. Dynam. Differential Equations 33 (2021), no. 2, 715–739. MR 4248630, DOI 10.1007/s10884-020-09828-5
- V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, The Poisson equation and estimates for distances between stationary distributions of diffusions, J. Math. Sci. (N.Y.) 232 (2018), no. 3, Problems in mathematical analysis. No. 92 (Russian), 254–282. MR 3813480, DOI 10.1007/s10958-018-3872-3
- Vladimir I. Bogachev, Nicolai V. Krylov, Michael Röckner, and Stanislav V. Shaposhnikov, Fokker-Planck-Kolmogorov equations, Mathematical Surveys and Monographs, vol. 207, American Mathematical Society, Providence, RI, 2015. MR 3443169, DOI 10.1090/surv/207
- Vladimir I. Bogachev, Michael Röckner, and Stanislav V. Shaposhnikov, Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures, J. Funct. Anal. 276 (2019), no. 12, 3681–3713. MR 3957996, DOI 10.1016/j.jfa.2019.03.014
- V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, On convergence to stationary distributions for solutions of nonlinear Fokker-Planck-Kolmogorov equations, J. Math. Sci. (N.Y.) 242 (2019), no. 1, Problems in mathematical analysis. No. 98, 69–84. MR 3999207, DOI 10.1007/s10958-019-04467-8
- O. A. Butkovsky, On ergodic properties of nonlinear Markov chains and stochastic McKean-Vlasov equations, Theory Probab. Appl. 58 (2014), no. 4, 661–674. MR 3403022, DOI 10.1137/S0040585X97986825
- José A. Cañizo, José A. Carrillo, Philippe Laurençot, and Jesús Rosado, The Fokker-Planck equation for bosons in 2D: well-posedness and asymptotic behavior, Nonlinear Anal. 137 (2016), 291–305. MR 3485127, DOI 10.1016/j.na.2015.07.030
- José A. Carrillo, Katharina Hopf, and José L. Rodrigo, On the singularity formation and relaxation to equilibrium in 1D Fokker-Planck model with superlinear drift, Adv. Math. 360 (2020), 106883, 66. MR 4031115, DOI 10.1016/j.aim.2019.106883
- J. A. Carrillo, J. Rosado, and F. Salvarani, 1D nonlinear Fokker-Planck equations for fermions and bosons, Appl. Math. Lett. 21 (2008), no. 2, 148–154. MR 2426970, DOI 10.1016/j.aml.2006.06.023
- José A. Carrillo, Philippe Laurençot, and Jesús Rosado, Fermi-Dirac-Fokker-Planck equation: well-posedness & long-time asymptotics, J. Differential Equations 247 (2009), no. 8, 2209–2234. MR 2561276, DOI 10.1016/j.jde.2009.07.018
- J. A. Carrillo, S. Lisini, G. Savaré, and D. Slepčev, Nonlinear mobility continuity equations and generalized displacement convexity, J. Funct. Anal. 258 (2010), no. 4, 1273–1309. MR 2565840, DOI 10.1016/j.jfa.2009.10.016
- Maria Colombo, Gianluca Crippa, Marie Graff, and Laura V. Spinolo, Recent results on the singular local limit for nonlocal conservation laws, Hyperbolic problems: theory, numerics, applications, AIMS Ser. Appl. Math., vol. 10, Am. Inst. Math. Sci. (AIMS), Springfield, MO, [2020] ©2020, pp. 369–376. MR 4362534
- Andreas Eberle, Arnaud Guillin, and Raphael Zimmer, Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes, Trans. Amer. Math. Soc. 371 (2019), no. 10, 7135–7173. MR 3939573, DOI 10.1090/tran/7576
- Till Daniel Frank, Nonlinear Fokker-Planck equations, Springer Series in Synergetics, Springer-Verlag, Berlin, 2005. Fundamentals and applications. MR 2118870
- Tadahisa Funaki, A certain class of diffusion processes associated with nonlinear parabolic equations, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 3, 331–348. MR 762085, DOI 10.1007/BF00535008
- Giulia Furioli, Ada Pulvirenti, Elide Terraneo, and Giuseppe Toscani, Fokker-Planck equations in the modeling of socio-economic phenomena, Math. Models Methods Appl. Sci. 27 (2017), no. 1, 115–158. MR 3597010, DOI 10.1142/S0218202517400048
- Katharina Hopf, Singularities in $L^1$-supercritical Fokker-Planck equations: a qualitative analysis, Ann. Inst. H. Poincaré C Anal. Non Linéaire 41 (2024), no. 2, 357–403. MR 4721643, DOI 10.4171/aihpc/85
- Min Ji, Zhongwei Shen, and Yingfei Yi, Convergence to equilibrium in Fokker-Planck equations, J. Dynam. Differential Equations 31 (2019), no. 3, 1591–1615. MR 3992083, DOI 10.1007/s10884-018-9705-8
- M. Kac, Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, Univ. California Press, Berkeley-Los Angeles, Calif., 1956, pp. 171–197. MR 84985
- Evelyn F. Keller and Lee A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), no. 3, 399–415. MR 3925816, DOI 10.1016/0022-5193(70)90092-5
- N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Mathematics, vol. 96, American Mathematical Society, Providence, RI, 2008. MR 2435520, DOI 10.1090/gsm/096
- N. V. Krylov, An analytic approach to SPDEs, Stochastic partial differential equations: six perspectives, Math. Surveys Monogr., vol. 64, Amer. Math. Soc., Providence, RI, 1999, pp. 185–242. MR 1661766, DOI 10.1090/surv/064/05
- Stefano Lisini and Antonio Marigonda, On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals, Manuscripta Math. 133 (2010), no. 1-2, 197–224. MR 2672546, DOI 10.1007/s00229-010-0371-3
- Yuliya Mishura and Alexander Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, Theory Probab. Math. Statist. 103 (2020), 59–101. MR 4421344, DOI 10.1090/tpms/1135
- Alexander Mogilner and Leah Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol. 38 (1999), no. 6, 534–570. MR 1698215, DOI 10.1007/s002850050158
- H. P. McKean Jr., A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1907–1911. MR 221595, DOI 10.1073/pnas.56.6.1907
- Akira Okubo, Diffusion and ecological problems: mathematical models, Biomathematics, vol. 10, Springer-Verlag, Berlin-New York, 1980. An extended version of the Japanese edition, Ecology and diffusion; Translated by G. N. Parker. MR 572962
- Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften, vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
- Zheng Sun, José A. Carrillo, and Chi-Wang Shu, A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials, J. Comput. Phys. 352 (2018), 76–104. MR 3717129, DOI 10.1016/j.jcp.2017.09.050
- Giuseppe Toscani, Finite time blow up in Kaniadakis-Quarati model of Bose-Einstein particles, Comm. Partial Differential Equations 37 (2012), no. 1, 77–87. MR 2864807, DOI 10.1080/03605302.2011.592236
- Andrea Tosin and Mattia Zanella, Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles, Multiscale Model. Simul. 17 (2019), no. 2, 716–749. MR 3948232, DOI 10.1137/18M1203766
- A. Yu. Veretennikov, On ergodic measures for McKean-Vlasov stochastic equations, Monte Carlo and quasi-Monte Carlo methods 2004, Springer, Berlin, 2006, pp. 471–486. MR 2208726, DOI 10.1007/3-540-31186-6_{2}9
Bibliographic Information
- V. I. Bogachev
- Affiliation: Lomonosov Moscow State University, Department of Mechanics and Mathematics, 119991, Moscow, Russia; National Research University “Higher School of Economics”
- MR Author ID: 212251
- Email: vibogach@mail.ru
- D. I. Salakhov
- Affiliation: Lomonosov Moscow State University, Department of Mechanics and Mathematics, 119991, Moscow, Russia
- Email: damir-salakhov@mail.ru
- S. V. Shaposhnikov
- Affiliation: Lomonosov Moscow State University, Department of Mechanics and Mathematics 119991, Moscow, Russia; National Research University “Higher School of Economics”
- Email: starticle@mail.ru
- Received by editor(s): July 2, 2022
- Published electronically: December 3, 2024
- Additional Notes: This research is supported by the Russian Science Foundation grant 22-11-00015 (at the Lomonosov Moscow State University). S. V. Shaposhnikov is a winner of the contest “The Young Mathematics of Russia” and thanks its jury and sponsors.
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 749-767
- MSC (2020): Primary 53A04; Secondary 52A40, 52A10
- DOI: https://doi.org/10.1090/spmj/1826