Different metrics in the problem of ideals for the algebra $H^\infty$
HTML articles powered by AMS MathViewer
- by
S. V. Kislyakov and A. A. Skvortsov;
Translated by: A. A. Skvortsov - St. Petersburg Math. J. 35 (2024), 815-826
- DOI: https://doi.org/10.1090/spmj/1830
- Published electronically: December 3, 2024
- HTML | PDF | Request permission
Abstract:
Starting with the 1970s, significant attention has been paid to estimates of solutions of equations arising in the corona theorem and the associated so-called ideal problem. Naturally, the question emerged about the metrics in which such estimates should be sought. In the case of the corona theorem, the answer to this question is known: it is practically always possible to pass from estimates in one reasonable metric to estimates in any other. In this article, something similar is proved for the ideal problem. It should be noted that in the case of the ideal problem, formulations themselves with different metrics are not always obvious.
The article concludes with several applications to the operator corona theorem and ideal problem.
The proofs of the main results heavily rely on fixed point theorems.
References
- A. V. Buhvalov, Hardy spaces of vector-valued functions, Zap. NauÄn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 65 (1976), 5ā16, 203 (Russian, with English summary). Investigations on linear operators and theory of functions, VII. MR 493312
- I. K. Zlotnikov, The problem of ideals in the algebra $H^\infty$ in the case of certain spaces of sequences, Algebra i Analiz 29 (2017), no.Ā 5, 51ā67 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 29 (2018), no.Ā 5, 749ā759. MR 3724638, DOI 10.1090/spmj/1514
- L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR 664597
- S. V. Kislyakov and D. V. RutskiÄ, Some remarks on the corona theorem, Algebra i Analiz 24 (2012), no.Ā 2, 171ā191 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 24 (2013), no.Ā 2, 313ā326. MR 3013331, DOI 10.1090/S1061-0022-2013-01240-4
- S. V. Kislyakov and A. S. Skvortsov, Fixed point theorems and Hardy classes, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 512 (2022), no.Ā Issledovaniya po LineÄnym Operatoram i Teorii FunktsiÄ. 50, 95ā115 (Russian, with English summary); English transl., J. Math. Sci. (N.Y.) 282 (2024), no.Ā 4, 516ā529. MR 4508361
- Paul Koosis, Introduction to $H_{p}$ spaces, London Mathematical Society Lecture Note Series, vol. 40, Cambridge University Press, Cambridge-New York, 1980. With an appendix on Wolffās proof of the corona theorem. MR 565451
- G. Ja. LozanovskiÄ, Certain Banach lattices, Sibirsk. Mat. Ž. 10 (1969), 584ā599 (Russian). MR 241949
- I. I. Privalov, GraniÄnye svoÄstva analitiÄeskih funkciÄ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). 2d ed.]. MR 47765
- V. A. Tolokonnikov, Estimates in the Carleson corona theorem, ideals of the algebra $H^{\infty }$, a problem of Sz.-Nagy, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981), 178ā198, 267 (Russian, with English summary). Investigations on linear operators and the theory of functions, XI. MR 629839
- S. R. Treilā², Angles between co-invariant subspaces, and the operator corona problem. The SzÅkefalvi-Nagy problem, Dokl. Akad. Nauk SSSR 302 (1988), no.Ā 5, 1063ā1068 (Russian); English transl., Soviet Math. Dokl. 38 (1989), no.Ā 2, 394ā399. MR 981054
- Ky. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121ā126. MR 47317, DOI 10.1073/pnas.38.2.121
- Paul A. Fuhrmann, On the corona theorem and its application to spectral problems in Hilbert space, Trans. Amer. Math. Soc. 132 (1968), 55ā66. MR 222701, DOI 10.1090/S0002-9947-1968-0222701-7
- Sergei Treil and Brett D. Wick, The matrix-valued $H^p$ corona problem in the disk and polydisk, J. Funct. Anal. 226 (2005), no.Ā 1, 138ā172. MR 2158178, DOI 10.1016/j.jfa.2005.04.010
- Sergei Treil, The problem of ideals of $H^\infty$: beyond the exponent $3/2$, J. Funct. Anal. 253 (2007), no.Ā 1, 220ā240. MR 2362422, DOI 10.1016/j.jfa.2007.07.018
- Dmitry V. Rutsky, Corona problem with data in ideal spaces of sequences, Arch. Math. (Basel) 108 (2017), no.Ā 6, 609ā619. MR 3646952, DOI 10.1007/s00013-017-1045-0
Bibliographic Information
- A. A. Skvortsov
- Affiliation: St.Ā Petersburg department of the V.Ā A.Ā Steklov Mathematical Institute Russian Academy of Sciences, Fontanka 27, 191023 St.Ā Petersburg, Russia
- Email: skis@pdmi.ras.ru, st076169@student.spbu.ru
- Received by editor(s): July 25, 2023
- Published electronically: December 3, 2024
- Additional Notes: This research was done under the support of Russian Science Foundation, a grant no.Ā 23-11-00171, https://rscf.ru/project/23-11-00171/
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 815-826
- MSC (2020): Primary 30H80
- DOI: https://doi.org/10.1090/spmj/1830