Structure of the algebra of transition types, and the cut-and-join operator
HTML articles powered by AMS MathViewer
- by
E. S. Krasil′nikov;
Translated by: S. V. Kislyakov - St. Petersburg Math. J. 35 (2024), 839-867
- DOI: https://doi.org/10.1090/spmj/1832
- Published electronically: December 3, 2024
- HTML | PDF | Request permission
Abstract:
Simple real Hurwitz numbers enumerate real meromorphic functions on real algebraic curves all finite critical values of which are simple. M. Kazarian, S. Lando, and S. Natanzon constructed algebras of transition types having these numbers as structure constants, and deduced cut-and-join type equations for generating functions for them. The subject of the present paper is the structure of the algebras of transition types and approaches to efficient computation of simple real Hurwitz numbers.References
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), no. 2, 297–327. MR 1864018, DOI 10.1007/s002220100164
- I. P. Goulden and D. M. Jackson, Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc. 125 (1997), no. 1, 51–60. MR 1396978, DOI 10.1090/S0002-9939-97-03880-X
- A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892), no. 3, 403–442 (German). MR 1510753, DOI 10.1007/BF01443420
- Ilia Itenberg and Dimitri Zvonkine, Hurwitz numbers for real polynomials, Comment. Math. Helv. 93 (2018), no. 3, 441–474. MR 3854898, DOI 10.4171/CMH/440
- N. F. J. Inglis, R. W. Richardson, and J. Saxl, An explicit model for the complex representations of $S_n$, Arch. Math. (Basel) 54 (1990), no. 3, 258–259. MR 1037615, DOI 10.1007/BF01188521
- M. È. Kazaryan and S. K. Lando, Combinatorial solutions to integrable hierarchies, Uspekhi Mat. Nauk 70 (2015), no. 3(423), 77–106 (Russian, with Russian summary); English transl., Russian Math. Surveys 70 (2015), no. 3, 453–482. MR 3400565, DOI 10.4213/rm9661
- —, On framed simple purely real Hurwitz numbers, arXiv:1809.04340, 2018.
- V. Kodiyalam and D.-N. Verma, A natural representation model for symmetric groups, arXiv: math/0402216, 2004.
- Sergei K. Lando and Alexander K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, vol. 141, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier; Low-Dimensional Topology, II. MR 2036721, DOI 10.1007/978-3-540-38361-1
- S. K. Lando, Introduction to discrete mathematics, MCCME, Moscow, 2012. (Russian)
- S. M. Natanzon, Simple Hurwitz numbers of a disk, Funktsional. Anal. i Prilozhen. 44 (2010), no. 1, 44–58 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 44 (2010), no. 1, 36–47. MR 2656384, DOI 10.1007/s10688-010-0004-3
- Andrei Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), no. 4, 447–453. MR 1783622, DOI 10.4310/MRL.2000.v7.n4.a10
- Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR 1442260, DOI 10.1017/CBO9780511805967
Bibliographic Information
- E. S. Krasil′nikov
- Affiliation: National Research University Higher School of Economics
- Email: evgeny12@mail.ru
- Received by editor(s): November 25, 2022
- Published electronically: December 3, 2024
- Additional Notes: The work was done under support of the International laboratory of claster geometry, HSE University, a grant of the RF Government, contract no. 075-15-2021-608 of 08.06.2021.
- © Copyright 2024 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 839-867
- MSC (2020): Primary 05A15; Secondary 14N10, 14P99, 58K05
- DOI: https://doi.org/10.1090/spmj/1832
Dedicated: To the memory of S. M. Natanzon