Direct and inverse theorems of approximation theory in Banach function spaces
HTML articles powered by AMS MathViewer
- by
O. L. Vinogradov;
Translated by: O. L. Vinogradov - St. Petersburg Math. J. 35 (2024), 907-928
- DOI: https://doi.org/10.1090/spmj/1836
- Published electronically: January 10, 2025
- HTML | PDF | Request permission
Abstract:
The paper deals with approximation of functions defined on $\mathbb {R}$ in spaces that are not translation invariant. The spaces under consideration are Banach function spaces in which Steklov averaging operators are uniformly bounded. It is proved that operators of convolution with a kernel whose bell shaped majorant is integrable are bounded in these spaces. With the help of convolution operators, direct and inverse theorems of the theory of approximation by trigonometric polynomials and entire functions of exponential type are established. As structural characteristics, the powers of deviations of Steklov averages are used, including nonintegral powers. Theorems for periodic and nonperiodic functions are obtained in a unified way. The results of the paper generalize and refine a lot of known theorems on approximation in specific spaces such as weighted spaces, Lebesgue variable exponent spaces and others.References
- A. F. Timan, Theory of approximation of functions of a real variable, International Series of Monographs in Pure and Applied Mathematics, vol. 34, The Macmillan Company, New York, 1963. Translated from the Russian by J. Berry; English translation edited and editorial preface by J. Cossar. MR 192238
- N. I. Achieser, Theory of approximation, Dover Publications, Inc., New York, 1992. Translated from the Russian and with a preface by Charles J. Hyman; Reprint of the 1956 English translation. MR 1217081
- Yitzhak Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. MR 2039503, DOI 10.1017/CBO9781139165372
- Harold S. Shapiro, Topics in approximation theory, Lecture Notes in Mathematics, Vol. 187, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg. MR 437981, DOI 10.1007/BFb0058976
- V. V. Zhuk, Approksimatsiya periodicheskikh funktsiĭ, Leningrad. Univ., Leningrad, 1982 (Russian). MR 665432
- O. L. Vinogradov, Sharp Jackson-type inequalities for approximations of classes of convolutions by entire functions of finite degree, Algebra i Analiz 17 (2005), no. 4, 59–114 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 4, 593–633. MR 2173937, DOI 10.1090/S1061-0022-06-00922-8
- Z. Ditzian, Some remarks on approximation theorems on various Banach spaces, J. Math. Anal. Appl. 77 (1980), no. 2, 567–576. MR 593235, DOI 10.1016/0022-247X(80)90248-6
- Z. Ditzian, On Lipschitz classes and derivative inequalities in various Banach spaces, Functional analysis, holomorphy and approximation theory, II (Rio de Janeiro, 1981) North-Holland Math. Stud., vol. 86, North-Holland, Amsterdam, 1984, pp. 57–67. MR 771322, DOI 10.1016/S0304-0208(08)70822-3
- I. I. Ibragimov, Teoriya priblizheniya tselymi funktsiyami, “Èlm”, Baku, 1979 (Russian). MR 565855
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635, DOI 10.1007/978-3-662-02888-9
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- O. L. Vinogradov, Direct and inverse theorems of approximation theory in Lebesgue spaces with Muckenhoupt weights, Ufa Math. J. 15 (2023), no. 4, 42–61. MR 4661304, DOI 10.13108/2023-15-4-42
- L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR 664597
- Wilhelmus Anthonius Josephus Luxemburg, Banach function spaces, Technische Hogeschool te Delft, Delft, 1955. Thesis. MR 72440
- Emiel Lorist and Zoe Nieraeth, Banach function spaces done right, Indag. Math. (N.S.) 35 (2024), no. 2, 247–268. MR 4726599, DOI 10.1016/j.indag.2023.11.004
- Denny Ivanal Hakim and Yoshihiro Sawano, Interpolation of generalized Morrey spaces, Rev. Mat. Complut. 29 (2016), no. 2, 295–340. MR 3490591, DOI 10.1007/s13163-016-0192-3
- E. A. Gadzhieva, Study of properties of functions with quasimonotone Fourier coefficients in generalized weighted Nikolskii-Besov spaces, Thesis, Baku, 1986. (Russian)
- Nguyen Xuan Ky, Moduli of mean smoothness and approximation with $A_p$-weights, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 40 (1997), 37–48 (1998). MR 1632805
- Daniyal M. Israfilov and Ali Guven, Approximation by trigonometric polynomials in weighted Orlicz spaces, Studia Math. 174 (2006), no. 2, 147–168. MR 2238459, DOI 10.4064/sm174-2-3
- Yunus E. Yildirir and Daniyal M. Israfilov, Approximation theorems in weighted Lorentz spaces, Carpathian J. Math. 26 (2010), no. 1, 108–119. MR 2676725
- R. Akgün, Jackson type inequalities for differentiable functions in weighted Orlicz spaces, St. Petersburg Math. J. 34 (2023), no. 1, 1–24. Reprinted from Algebra i Analiz 34 (2022), No. 1. MR 4528761, DOI 10.1090/spmj/1743
- I. I. Sharapudinov, Some questions in the theory of approximation in Lebesgue spaces with variable exponent, UMI VNC RAN i RSO-A, Vladikavkaz, 2012. (Russian)
- I. I. Sharapudinov, Approximation of functions in $L^{p(x)}_{2\pi }$ by trigonometric polynomials, Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 2, 197–224 (Russian, with Russian summary); English transl., Izv. Math. 77 (2013), no. 2, 407–434. MR 3097572, DOI 10.1070/IM2013v077n02ABEH002641
- —, Approximation of smooth functions in by Vallee-Poussin means, Izv. Sarat. Univ. (N.S.), Ser. Math. Mech. Inform. 13 (2013), no. 1, 45–49. (Russian)
- Idris I. Sharapudinov, On direct and inverse theorems of approximation theory in vector Lebesgue and Sobolev spaces, Azerb. J. Math. 4 (2014), no. 1, 55–72. MR 3167901
- S. S. Volosivets, Approximation of functions and their conjugates in Lebesgue spaces with a variable exponent, Mat. Sb. 208 (2017), no. 1, 48–64 (Russian, with Russian summary); English transl., Sb. Math. 208 (2017), no. 1-2, 44–59. MR 3598764, DOI 10.4213/sm8636
- S. S. Volosivets, Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces, Izv. Vyssh. Uchebn. Zaved. Mat. 6 (2022), 13–25 (Russian, with English and Russian summaries); English transl., Russian Math. (Iz. VUZ) 66 (2022), no. 6, 8–19. MR 4645293, DOI 10.26907/0021-3446-2022-6-13-25
- S. Volosivets, Approximation in variable exponent spaces and growth of norms of trigonometric polynomials, Anal. Math. 49 (2023), no. 1, 307–336. MR 4554799, DOI 10.1007/s10476-022-0183-1
- Daniyal M. Israfilov and Ahmet Testici, Approximation problems in the Lebesgue spaces with variable exponent, J. Math. Anal. Appl. 459 (2018), no. 1, 112–123. MR 3730430, DOI 10.1016/j.jmaa.2017.10.067
- Daniyal M. Israfilov and Ahmet Testici, Simultaneous approximation in Lebesgue space with variable exponent, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 44 (2018), no. 1, 3–18. MR 3815413
- Ramazan Akgün, Direct theorems of trigonometric approximation for variable exponent Lebesgue spaces, Rev. Un. Mat. Argentina 60 (2019), no. 1, 121–135. MR 3981561, DOI 10.33044/revuma.v60n1a08
- Ramazan Akgün, Approximation properties of Bernstein’s singular integrals in variable exponent Lebesgue spaces on the real axis, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 71 (2022), no. 4, 1059–1079. MR 4522665
- Ramazan Akgün, Exponential approximation in variable exponent Lebesgue spaces on the real line, Constr. Math. Anal. 5 (2022), no. 4, 214–237. MR 4521869
- R. Akgün, Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight, Probl. Anal. Issues Anal. 12(30) (2023), no. 1, 3–24. MR 4582289
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- David V. Cruz-Uribe and Alberto Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. MR 3026953, DOI 10.1007/978-3-0348-0548-3
- Lars Diening, Petteri Harjulehto, Peter Hästö, and Michael Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011. MR 2790542, DOI 10.1007/978-3-642-18363-8
- Petteri Harjulehto and Peter Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019. MR 3931352, DOI 10.1007/978-3-030-15100-3
- T. N. Shakh-Emirov, On uniform boundedness of some families of integral convolution operators in weighted variable exponent Lebesgue spaces, Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform. 14 (2014), no. 4, 422–427. (Russian)
- —, On the uniform boundedness of the family of shifts of Steklov functions in weighted Lebesgue spaces with variable exponent, Daghestan Electron. Mat. Reports 8 (2017), 93–99. (Russian)
- G. Wilmes, On Riesz-type inequalities and $K$-functionals related to Riesz potentials in $\textbf {R}^{N}$, Numer. Funct. Anal. Optim. 1 (1979), no. 1, 57–77. MR 521687, DOI 10.1080/01630567908816004
- Roald M. Trigub and Eduard S. Bellinsky, Fourier analysis and approximation of functions, Kluwer Academic Publishers, Dordrecht, 2004. [Belinsky on front and back cover]. MR 2098384, DOI 10.1007/978-1-4020-2876-2
- R. M. Trigub, On various moduli of smoothness and $K$-functionals, Ukraïn. Mat. Zh. 72 (2020), no. 7, 971–996 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 72 (2020), no. 7, 1131–1163. MR 4189322, DOI 10.37863/umzh.v72i7.2384
- Yurii Kolomoitsev, On moduli of smoothness and averaged differences of fractional order, Fract. Calc. Appl. Anal. 20 (2017), no. 4, 988–1009. MR 3684879, DOI 10.1515/fca-2017-0051
- G. I. Natanson and M. F. Tīman, The geometric means of the sequence of best approximations, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 4 (1979), 50–52, 123 (Russian, with English summary). MR 564575
- O. L. Vinogradov, On the constants in abstract inverse theorems of approximation theory, St. Petersburg Math. J. 34 (2023), no. 4, 573–589. Translated from Algebra i Analiz 34 (2022), No. 4. MR 4624696, DOI 10.1090/spmj/1770
- F. Dai, Z. Ditzian, and S. Tikhonov, Sharp Jackson inequalities, J. Approx. Theory 151 (2008), no. 1, 86–112. MR 2403897, DOI 10.1016/j.jat.2007.04.015
- Yu. S. Kolomoitsev and S. Yu. Tikhonov, Smoothness of functions versus smoothness of approximation processes, Bull. Math. Sci. 10 (2020), no. 3, 2030002, 57. MR 4179133, DOI 10.1142/S1664360720300029
- Z. Ditzian, V. H. Hristov, and K. G. Ivanov, Moduli of smoothness and $K$-functionals in $L_p$, $0<p<1$, Constr. Approx. 11 (1995), no. 1, 67–83. MR 1323964, DOI 10.1007/BF01294339
Bibliographic Information
- O. L. Vinogradov
- Affiliation: St. Petersburg State University, Universitetskaya nab. 7–9, 199034 St. Petersburg, Russia
- Email: olvin@math.spbu.ru
- Received by editor(s): September 15, 2023
- Published electronically: January 10, 2025
- Additional Notes: This work is supported by the Russian Science Foundation under grant no. 23-11-00178, https://rscf.ru/project/23-11-00178/
- © Copyright 2025 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 907-928
- MSC (2020): Primary 41A17, 42A10
- DOI: https://doi.org/10.1090/spmj/1836