Bellman function method for general operators on martingales: arbitrary regular filtrations
HTML articles powered by AMS MathViewer
- by N. N. Osipov;
- St. Petersburg Math. J. 35 (2024), 1005-1011
- DOI: https://doi.org/10.1090/spmj/1840
- Published electronically: January 10, 2025
- HTML | PDF | Request permission
Abstract:
It has recently been shown that the Bellman function method can be applied in the general context of Gundy’s extrapolation theorem for vector-valued martingales. But this was done under the additional assumption that martingales are adapted to a certain special filtration. Here it is shown that those results can be extended to any regular filtration.References
- Richard F. Gundy, A decomposition for $L^{1}$-bounded martingales, Ann. Math. Statist. 39 (1968), 134–138. MR 221573, DOI 10.1214/aoms/1177698510
- S. V. Kislyakov, Martingale transformations and uniformly convergent orthogonal series, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 141 (1985), 18–38, 188 (Russian, with English summary). Investigations on linear operators and the theory of functions, XIV. MR 788888
- N. N. Osipov, Littlewood–Paley–Rubio de Francia inequality for the Walsh system, Algebra i Analiz 28 (2016), no. 5, 236–246; English transl., St. Petersburg Math. J. 28 (2017), no. 5, 719–726. MR 3637591, DOI 10.1090/spmj/1469
- José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1 (1985), no. 2, 1–14. MR 850681, DOI 10.4171/RMI/7
- D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), no. 3, 647–702. MR 744226, DOI 10.1214/aop/1176993220
- F. L. Nazarov and S. R. Treĭl′, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), no. 5, 32–162 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 5, 721–824. MR 1428988
- A. Osękowski, Sharp martingale and semimartingale inequalities, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 72, Birkhäuser/Springer Basel AG, Basel, 2012. MR 2964297, DOI 10.1007/978-3-0348-0370-0
- Paata Ivanisvili, Nikolay N. Osipov, Dmitriy M. Stolyarov, Vasily I. Vasyunin, and Pavel B. Zatitskiy, Sharp estimates of integral functionals on classes of functions with small mean oscillation, C. R. Math. Acad. Sci. Paris 353 (2015), no. 12, 1081–1085 (English, with English and French summaries). MR 3427912, DOI 10.1016/j.crma.2015.07.016
- Vasily Vasyunin and Alexander Volberg, The Bellman function technique in harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 186, Cambridge University Press, Cambridge, 2020. MR 4411371, DOI 10.1017/9781108764469
- P. Ivanisvili, D. M. Stolyarov, V. I. Vasyunin, and P. B. Zatitskiy, Bellman functions on simple non-convex domains in the plane, Mem. Amer. Math. Soc. 255 (2023), no. 1220, 3415–3468.
- Viacheslav Borovitskiy, Nikolay N. Osipov, and Anton Tselishchev, Burkholder meets Gundy: Bellman function method for general operators on martingales. part A, Adv. Math. 410 (2022), no. part A, Paper No. 108746, 22. MR 4496728, DOI 10.1016/j.aim.2022.108746
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, RI, 1977. With a foreword by B. J. Pettis. MR 453964, DOI 10.1090/surv/015
- David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. MR 1155402, DOI 10.1017/CBO9780511813658
Bibliographic Information
- N. N. Osipov
- Affiliation: St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences; St. Petersburg State University, St. Petersburg, Russia
- Email: nicknick@pdmi.ras.ru
- Received by editor(s): September 9, 2023
- Published electronically: January 10, 2025
- Additional Notes: The work was supported by the Russian Science Foundation grant 19-11-00058P
- © Copyright 2025 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 1005-1011
- MSC (2020): Primary 60G42; Secondary 60G48
- DOI: https://doi.org/10.1090/spmj/1840