Inequalities for mixed means
HTML articles powered by AMS MathViewer
- by
A. I. Khrabrov;
Translated by: S. V. Kislyakov - St. Petersburg Math. J. 35 (2024), 1021-1036
- DOI: https://doi.org/10.1090/spmj/1842
- Published electronically: January 10, 2025
- HTML | PDF | Request permission
Abstract:
The relation $\mathcal {M}_p\circ \mathcal {M}_q(x)\leq \mathcal {M}_q\circ \mathcal {M}_p(x)$ between mixed power means for absolutely continuous measures (with respect to Lebesgue measure) is proved along with several other inequalities for mixed means. Equality cases and discrete analogs are studied.References
- Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 30, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 158038, DOI 10.1007/978-3-642-64971-4
- V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 2267655, DOI 10.1007/978-3-540-34514-5
- Elliott H. Lieb and Michael Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. MR 1415616, DOI 10.1090/gsm/014
- A. N. Petrov, Monotonicity of averaged power means, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 255 (1998), no. Issled. po Lineĭn. Oper. i Teor. Funkts. 26, 140–147, 252 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 107 (2001), no. 4, 4067–4072. MR 1692920, DOI 10.1023/A:1012492717535
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 46395
- N. G. de Bruijn, Carleman’s inequality for finite series, Indag. Math. 25 (1963), 505–514. Nederl. Akad. Wetensch. Proc. Ser. A 66. MR 156141, DOI 10.1016/S1385-7258(63)50050-X
- P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, Means and their inequalities, Mathematics and its Applications (East European Series), vol. 31, D. Reidel Publishing Co., Dordrecht, 1988. Translated and revised from the Serbo-Croatian. MR 947142, DOI 10.1007/978-94-017-2226-1
- P. S. Bullen, Handbook of means and their inequalities, Mathematics and its Applications, vol. 560, Kluwer Academic Publishers Group, Dordrecht, 2003. Revised from the 1988 original [P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their inequalities, Reidel, Dordrecht; MR0947142]. MR 2024343, DOI 10.1007/978-94-017-0399-4
- T. Carleman, Sur les fonctions quasi-analytiques, 5 Kongress Skandinav. Math. in Helsingfors (Juli 1922), vom. 4, bis 7, Akadem. Buchh., Helsingfors, 1923, pp. 181–196.
- Lennart Carleson, A proof of an inequality of Carleman, Proc. Amer. Math. Soc. 5 (1954), 932–933. MR 65601, DOI 10.1090/S0002-9939-1954-0065601-3
- A. Čižmešija and J. Pečarić, Mixed means and Hardy’s inequality, Math. Inequal. Appl. 1 (1998), no. 4, 491–506. MR 1646729, DOI 10.7153/mia-01-47
- Aleksandra Čižmešija and Josip Pec̆arić, Classical Hardy’s and Carleman’s inequalities and mixed means, Survey on classical inequalities, Math. Appl., vol. 517, Kluwer Acad. Publ., Dordrecht, 2000, pp. 27–65. MR 1894716, DOI 10.1007/978-94-011-4339-4_{2}
- Aleksandra Čižmešija, Josip Pec̆arić, and Lars-Erik Persson, On strengthened Hardy and Pólya-Knopp’s inequalities, J. Approx. Theory 125 (2003), no. 1, 74–84. MR 2016841, DOI 10.1016/j.jat.2003.09.007
- John Duncan and Colin M. McGregor, Carleman’s inequality, Amer. Math. Monthly 110 (2003), no. 5, 424–431. MR 2040885, DOI 10.2307/3647829
- G. H. Hardy, Remarks on Three Recent Notes in the Journal, J. London Math. Soc. 3 (1928), no. 3, 166–169. MR 1574154, DOI 10.1112/jlms/s1-3.3.166
- G. H. Hardy, Prolegomena to a Chapter on Inequalities, J. London Math. Soc. 4 (1929), no. 1, 61–78. MR 1574908, DOI 10.1112/jlms/s1-4.1.61
- F. Holland, On a mixed arithmetic-mean, geometric-mean inequality, Math. Competit. 5 (1992), 60–64.
- Finbarr Holland, An inequality between compositions of weighted arithmetic and geometric means, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 5, Article 159, 8. MR 2268614
- Maria Johansson, Lars-Erik Persson, and Anna Wedestig, Carleman’s inequality-history, proofs and some new generalizations, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 53, 19. MR 2044402
- Sten Kaijser, Lars-Erik Persson, and Anders Öberg, On Carleman and Knopp’s inequalities, J. Approx. Theory 117 (2002), no. 1, 140–151. MR 1920123, DOI 10.1006/jath.2002.3684
- Kiran Kedlaya, Proof of a mixed arithmetic-mean, geometric-mean inequality, Amer. Math. Monthly 101 (1994), no. 4, 355–357. MR 1270962, DOI 10.2307/2975630
- Kiran S. Kedlaya, Notes: A Weighted Mixed-Mean Inequality, Amer. Math. Monthly 106 (1999), no. 4, 355–358. MR 1543452, DOI 10.2307/2589560
- Konrad Knopp, Uber Reihen Mit Positiven Gliedern, J. London Math. Soc. 3 (1928), no. 3, 205–211. MR 1574165, DOI 10.1112/jlms/s1-3.3.205
- Alois Kufner, Lars-Erik Persson, and Natasha Samko, Weighted inequalities of Hardy type, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. MR 3676556, DOI 10.1142/10052
- Baofeng Lai, Runqiu Wang, and Hao Liu, A note on two weighted discrete Carleman inequalities, J. Math. Inequal. 15 (2021), no. 4, 1601–1611. MR 4364699, DOI 10.7153/jmi-2021-15-110
- Takashi Matsuda, An inductive proof of a mixed arithmetic-geometric mean inequality, Amer. Math. Monthly 102 (1995), no. 7, 634–637. MR 1349877, DOI 10.2307/2974561
- D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Mathematics and its Applications (East European Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1991. MR 1190927, DOI 10.1007/978-94-011-3562-7
- B. Mond and J. E. Pečarić, A mixed means inequality, Austral. Math. Soc. Gaz. 23 (1996), no. 2, 67–70. MR 1403854
- Josip Pec̆arić and Kenneth B. Stolarsky, Carleman’s inequality: history and new generalizations, Aequationes Math. 61 (2001), no. 1-2, 49–62. MR 1820809, DOI 10.1007/s000100050160
- G. Pólya, Proof of an inequality, Proc. London Math. Soc. Ser. 2 24 (1926), LVII.
- Ray Redheffer, Recurrent inequalities, Proc. London Math. Soc. (3) 17 (1967), 683–699. MR 218513, DOI 10.1112/plms/s3-17.4.683
- G. Sunouchi and N. Takagi, A generalization of the Carleman’s inequality theorem, Proc. Phys.-Math. Soc. Japan. 16 (1934), 164–166.
- Christos D. Tarnavas and Dimitrios D. Tarnavas, An inequality for mixed power means, Math. Inequal. Appl. 2 (1999), no. 2, 175–181. MR 1681818, DOI 10.7153/mia-02-15
Bibliographic Information
- A. I. Khrabrov
- Affiliation: Higher School of Economics St. Petersburg School of Physics, Mathematics, and Computer Science, 194100, Kantemirovskaya ul. 3, bld 1A, St. Petersburg, Russia
- Email: aikhrabrov@mail.ru
- Received by editor(s): August 5, 2023
- Published electronically: January 10, 2025
- © Copyright 2025 American Mathematical Society
- Journal: St. Petersburg Math. J. 35 (2024), 1021-1036
- MSC (2020): Primary 26D10, 26D15
- DOI: https://doi.org/10.1090/spmj/1842