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1. Introduction

Let R be a commutative ring containing a field of characteristic p > 0. The
Frobenius map F : R → R is a ring homomorphism sending x to xp for each x ∈ R.
The letter “F” in the title of this article stands for the Frobenius map, and by “F -
singularities” we mean singularities defined in terms of the Frobenius map. The
theory of F -singularities provides a series of methods to analyze singularities (not
only in positive characteristic but also in characteristic zero), using techniques from
commutative algebra in positive characteristic.

The importance of analytic methods for singularity theory has been recognized
for many years. When the second-named author was a graduate student, his su-
pervisor, Yukiyoshi Kawada, gave him the following advice: “(some of) the deepest
theorems in algebraic geometry have been proved by using analysis. It is bet-
ter to study analytic methods.” Indeed, the Kodaira vanishing theorem and the
Briançon-Skoda theorem, which we will explain in Section 2, were first proved by
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2 S. TAKAGI AND K.-I. WATANABE

using analysis, and no purely algebraic proofs were known for these theorems until
the 1980s. Also, it was impressive to Watanabe that Hochster, who was a leading
researcher in commutative ring theory, gave a series of ten lectures entitled “Ana-
lytic Methods in Commutative Algebra” at the NSF regional conference at George
Mason University in 1979. It was especially impressive to him that Hochster lec-
tured even on some theorems of functional analysis, carrying the famous thick book
written by Griffiths and Harris [33]. Here is a quote from the introduction of the
paper by Lipman and Teissier [82]: “The proof given by Briançon and Skoda of
this completely algebraic statement is based on a quite transcendental deep result
of Skoda. The absence of an algebraic proof has been for algebraists something of
a scandal—perhaps even an insult—and certainly a challenge.” This captures the
feelings of commutative algebraists at the time very well.

The situation changed dramatically in the mid 1980s. Deligne-Illusie [15] and
Hochster-Huneke [54] gave a comparatively elementary proof of the Kodaira van-
ishing theorem and the Briançon-Skoda theorem, respectively, using characteristic
p methods. Such a development of characteristic p methods provided a framework
to translate various notions about singularities in characteristic zero into the lan-
guage of F -singularities. This leads us to the maxim: “(As far as singularities of
algebraic varieties are concerned) what has been proved by analytic methods can
be proved by characteristic p methods.” The goal of this article is to exhibit the
effectiveness of characteristic p methods in singularity theory.

We shall have a look at the organization of this article. In Section 2, we review
the theory of tight closure introduced by Hochster and Huneke. We then discuss
the Boutot-type theorem for F -singularities and the tight closure version of the
Briançon-Skoda theorem. In Section 3, we overview four classes of F -singularities:
strongly F -regular, F -rational, F -pure and F -injective rings. In particular, we ob-
serve that rational singularities and F -rational rings are “morally equivalent”. In
Section 4, we generalize the definition of F -singularities to the pair setting. We then
explain a correspondence of F -singularities and singularities in the minimal model
program. We also mention the theory of F -adjunction introduced by Karl Schwede.
In Section 5, we explain two applications of asymptotic test ideals, a positive char-
acteristic analogue of asymptotic multiplier ideals. One is to symbolic powers of
ideals and the other is to asymptotic base loci in positive characteristic. In Section
6, we give an overview of Hilbert-Kunz theory. We explain a characterization of
regular local rings in terms of Hilbert-Kunz multiplicity and then discuss a lower
bound for the Hilbert-Kunz multiplicity of any non-regular local ring. Finally, we
close this article by listing some of the topics that are not discussed in this article.

Throughout this article, all rings are Noetherian commutative rings with unity.
For a ring R, we denote by R◦ the set of elements of R which are not in any minimal
prime ideal.

2. Tight closure

The following facts are fundamental in the theory of singularities of algebraic
varieties over a field of characteristic zero:

(1) ([70]) Rational singularities are Cohen-Macaulay.
(2) (Boutot’s theorem [9]) Pure subrings of rational singularities are again ra-

tional singularities.
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(3) (Briançon-Skoda theorem [13]) If I is an ideal in a regular ring generated
by n elements, then the integral closure of In is contained in I.

We can formulate analogous results in positive characteristic, using the theory of
tight closure. Tight closure is a closure operation defined on ideals (and modules)
in positive characteristic, and its name comes from the fact that tight closure is
“tighter” (smaller) than integral closure. In this section, we review the theory of
tight closure and then discuss a tight closure version of the above theorems. The
results, not specifically mentioned, come from [54]. We recommend [60], [61] for a
nice introduction to the theory of tight closure. The reader is referred to [14], [32],
[85] for standard notions and facts from commutative ring theory.

Suppose that p is a prime number and R is a reduced ring of characteristic p,
that is, R contains the prime field Fp. For a power q = pe of p and an ideal I of R,
we put

I [q] = (aq|a ∈ I) ⊆ R.

Definition 2.1. For an ideal I of R, we define the tight closure I∗ of I as follows:
an element x ∈ R belongs to I∗ if and only if there exists some c ∈ R◦ such that
cxq ∈ I [q] for all sufficiently large powers q = pe of p. We can easily show that I∗

is an ideal of R containing I. We say that the ideal I is tightly closed if I∗ = I.

In the theory of tight closure and F -singularities, Kunz’s theorem plays a very
important role. Before stating the theorem, we recall that the Frobenius map
F : R → R is defined by F (a) = ap for every a ∈ R. Since (x + y)p = xp + yp in
characteristic p, the map F is a ring homomorphism.

Theorem 2.2 (Kunz’s theorem [76]). For a local ring (R,m) of dimension d con-
taining a field of characteristic p > 0, the following conditions are equivalent:

(1) R is regular.
(2) The Frobenius map F : R → R is flat.
(3) �R(R/m[p]) = pd.
(4) For any power q = pe of p, �R(R/m[q]) = qd,

where �R(M) denotes the length of an R-module M .

Proposition 2.3. If (R,m) is a regular local ring, then every ideal in R is tightly
closed.

Proof. Suppose to the contrary that there exists an element x ∈ I∗ \ I for some
ideal I ⊂ R. Then (I : x) ⊆ m. Since the Frobenius map F : R → R is flat by
Theorem 2.2, (I [q] : xq) = (I : x)[q] ⊆ m[q] for every q = pe.1 On the other hand,
by the definition of tight closure, there exists a non-zero element c ∈ R such that
cxq ∈ I [q] for all sufficiently large q = pe. Hence, we have

c ∈
⋂
e�0

(I [p
e] : xpe

) ⊆
⋂
e�0

m
[pe] = (0),

which is a contradiction. Thus, J∗ = J for every ideal J in R. �
This result leads us to introduce the notion of F -regular rings. The notion of F -

rational rings is also defined in a similar way. Although the definitions of F -rational
rings and rational singularities are completely different at first glance, we can think

1For ideals I, J of a ring A, we denote (I : J) = {x ∈ A |xJ ⊂ I}. Also, we denote the ideal
(I : (y)) simply by (I : y). This “colon” operation will appear frequently in this section.
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of F -rational rings as a positive characteristic analogue of rational singularities as
we will see in Section 3.

Definition 2.4. Let R be a reduced ring of characteristic p > 0.

(1) We say that R is weakly F -regular if every ideal in R is tightly closed. We
say that R is F -regular if every localization of R is weakly F -regular.

(2) ([20]) A local ring (R,m) is said to be F -rational if every parameter ideal2

is tightly closed. When R is not local, we say that R is F -rational if the
local ring Rp is F -rational for every maximal ideal p of R.

By definition, we have the following hierarchy of properties of local rings:

F -regular �� weakly F -regular �� F -rational.

If the ring is Gorenstein, then F -rationality implies F -regularity (see Proposition
3.11).

Remark 2.5. The question of whether tight closure commutes with localization,
that is, whether (IS−1R)∗ = I∗(S−1R) for every multiplicative subset S ⊂ R and
for every ideal I of R, had been a long standing open problem since tight closure
was introduced by Hochster and Huneke in 1986. In 2010, Brenner and Monsky
[12] gave a negative answer to this question by constructing a counterexample in
characteristic 2. However, the question of whether every weakly F -regular ring is
F -regular still remains open (see also Remark 3.5 (1)).

Example 2.6. Let k be a field of characteristic p > 0.
(1) Let R = k[X,Y, Z]/(Xn + Y n + Zn), where n ≥ 2 is an integer not divisible

by p. Let x, y, z denote the images of X,Y, Z in R, respectively, and put I = (y, z).
Then x �∈ I∗ and x2 ∈ I∗. Therefore, if R is F -rational, then n = 2, and the
converse also holds if p ≥ 3.

(2) Suppose that R = k[X,Y, Z]/(Xa + Y b + Zc) is reduced, where a, b, c are
integers greater than or equal to 2. Let x, y, z denote the images of X,Y, Z in
R, respectively, and put I = (y, z). Then the condition that xa−1 �∈ I∗ implies
1/a + 1/b + 1/c > 1. Therefore, if R is F -rational, then 1/a + 1/b + 1/c > 1,
and the converse also holds if p > 5. This should be compared with the fact that
when k is a field of characteristic zero, R is a rational singularity if and only if
1/a+ 1/b+ 1/c > 1.

We give a sketch of the proof of Example 2.6 in order to help the reader get a
feeling of tight closure.

A sketch of the proof of Example 2.6. (1) Fix any q = pe and write q = nu + r
with 0 ≤ r < n. Since (x2)q = x2r(xn)2u = (−1)2ux2r(yn + zn)2u, we have
(yz)n(x2)q ∈ (yq, zq) = I [q]. Thus, x2 ∈ I∗.

In order to show x �∈ I∗, we use the notion of test elements (see Definition 5.2).
It follows from Lemma 5.3 that there exists some power zm of z such that for every
w ∈ I∗, one has zmwq ∈ I [q] for all q = pe.

Suppose to the contrary that x ∈ I∗, and choose q = pe > m. Let S = k[X,Y, Z]
be a polynomial ring, and put J = (Xn + Y n + Zn, Y q, Zq) ⊂ S. We take the

2We call an ideal I a parameter ideal if I is generated by ht I elements.
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graded reverse lexicographic order on S with X > Y > Z.3 Then the initial ideal
in(J) = (Xn, Y q, Zq). Write q = nu+ r with 0 ≤ r < n. Since

in((−1)uZmXr(Y n + Zn)u) = (−1)uXrY nuZm /∈ (Xn, Y q, Zq) = in(J),

one has ZmXq /∈ J . This means that zmxq /∈ I [q], which is a contradiction.
(2) Fix any q = pe and write q = au + r with 0 ≤ r < a. Suppose that

1/a+ 1/b+ 1/c ≤ 1. Then

(xa−1)q = (−1)(a−1)ux(a−1)r(yb + zc)(a−1)u ⊂ ((yb + zc)�a/b+a/c�u),

which implies that (yz)a(xa−1)q ∈ (yq, zq) = I [q]. Thus, xa−1 ∈ I∗. �

One of the important properties of F -rational rings is that they are Cohen-
Macaulay. First we recall the definitions of Cohen-Macaulay rings and related
notions.

Let (A,m) be a local ring of dimension d and EA(A/m) be the injective hull of
the residue field A/m. Then the canonical module ωA of A is defined by

ωA ⊗A Â ∼= HomA(H
d
m(A), EA(A/m)).

Alternatively, it is defined as ωA = H−d(ω•
A), where ω•

A is a normalized dualizing
complex of A. In other words, ω•

A is a bounded complex of injective A-modules
satisfying the following three conditions: (1) the canonical map A → Hom•

A(ω
•
A, ω

•
A)

is a quasi-isomorphism, (2) Hi(ω•
A) is a finitely generated A-module for each i, and

(3) min{i | Hi(ω•
A) �= 0} = −d.

By this definition, if A has a dualizing complex, then A has a canonical module.4

Definition 2.7. Let A be a d-dimensional local ring with canonical module ωA.

(1) We say that A is a Cohen-Macaulay ring if a full system of parameters
x1, . . . , xd for A is a regular sequence, that is, if (x1, . . . , xi) : xi+1 =
(x1, . . . , xi) for i = 0, . . . , d−1. Note that if some full system of parameters
is a regular sequence, then so is every full system of parameters.

(2) We say that A is a Gorenstein ring if A is Cohen-Macaulay and ωA is a
free A-module. We say that A is a quasi-Gorenstein ring if ωA is free. A
quasi-Gorenstein ring may not be Cohen-Macaulay.

When A is not a local ring, we say that A is Cohen-Macaulay (respectively, Goren-
stein, quasi-Gorenstein) if so is the local ring Ap for every maximal ideal p of A.

Next we recall the definition of rational singularities.

Definition 2.8. Let R be a normal ring essentially of finite type over a field k of
characteristic zero, that is, R is a localization of a finitely generated algebra over k.
We say that R is a rational singularity if there exists a resolution of singularities
π : Y → SpecR, a proper birational morphism with Y a regular scheme, such that
Riπ∗OY = 0 for every i > 0. If R is a rational singularity, then Riπ∗OY = 0 for
every i > 0 for every resolution of singularities π : Y → SpecR.

3The graded reverse lexicographic order on the polynomial ring k[X1, . . . ,Xn] is defined by
saying that Xα > Xβ if degXα > degXβ or if degXα = degXβ and in the vector difference
α− β, the rightmost non-zero entry is negative.

4It is known in [69] that A has a dualizing complex if and only if A is a homomorphic image
of a Gorenstein local ring.
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It is an application of the Grauert-Riemenschneider vanishing theorem that R is
a rational singularity if and only if R is Cohen-Macaulay and π∗ωY = ωR for some
(every) resolution π : Y → SpecR, where ωY is the canonical sheaf on Y .

Let us introduce the notion of pure subrings. Let A ⊂ B be a ring extension.
We say that A is a pure subring of B if for every A-module M ,the natural map
M = M ⊗A A → M ⊗A B is injective.5 For example, if A is a direct summand of
B as an A-module, then A is a pure subring of B.

The following Boutot’s theorem is very important in the study of singularities
in characteristic zero. For example, it is a direct consequence of this theorem that
in characteristic zero, rings of invariants under linearly reductive group actions are
rational singularities.

Theorem 2.9 (Boutot’s theorem [9]). Let A ⊂ B be an extension of rings of
essentially finite type over a field of characteristic zero, and assume that A is a
pure subring of B. If B is a rational singularity, then so is A.

Although Boutot’s theorem is proved by using the Grauert-Riemenschneider van-
ishing theorem, the Boutot-type theorem for F -regular rings immediately follows
from the definition.

Theorem 2.10 (Boutot-type theorem for F -regular rings). Let R ⊂ S be an ex-
tension of reduced rings of characteristic p > 0 satisfying the condition R◦ ⊆ S◦,
and assume that R is a pure subring of S. If S is weakly F -regular (respectively,
F -regular), then so is R.

Indeed, it is almost obvious to see that I∗S ⊂ (IS)∗ for every ideal I of R. If S
is weakly F -regular, then I∗ ⊆ (IS)∗ ∩ R = IS ∩ R = I, which implies that R is
weakly F -regular, too.

Remark 2.11. While we can think of F -rational rings as a positive characteristic
analogue of rational singularities, “Boutot-type theorem for F -rational rings” fails
to hold. Let k be a field of characteristic p > 0 and let R =

⊕
n≥0 Rn be a

Noetherian graded ring with R0 = k. It is known in [125] (see also [44]) that if
R is a Cohen-Macaulay isolated singularity and if a(R) < 0 where a(R) is the
a-invariant of R,6 then R is a pure subring of some F -rational graded ring. For
example, suppose that R = k[X,Y, Z]/(X2+Y 3+Z5), and x, y, z denote the images
of X,Y, Z in R, respectively. Then R can be viewed as a graded ring by putting
deg x = 15, deg y = 10, deg z = 6, respectively, and a(R) = −1. If p ≤ 5, then R is
not an F -rational ring but a pure subring of some F -rational graded ring. This is
a counterexample to “Boutot-type theorem for F -rational rings”.

On the other hand, “Boutot-type theorem for F -rational rings” holds if R ⊂ S
is a finite extension. Indeed, if S is a finite R-module, then the extension IS of a
parameter ideal I of R is a parameter ideal of S. Thus, if S is F -rational and if R
is a pure subring of S, then R is F -rational by the same argument as the proof of
Theorem 2.10.

5For an ideal I of A, the natural map A/I → (A/I)⊗AB is injective if and only if IB∩A = I.
Under the mild assumption that A is locally excellent and reduced, the condition that IB∩A = I
for every ideal I in A is equivalent to the one that A is a pure subring of B ([52]).

6The a-invariant a(A) of a d-dimensional Noetherian graded ring (A,m) =
⊕

n≥0 An with A0

a field, introduced by Goto and Watanabe [31], is the largest integer a such that [Hd
m(A)]a �= 0.
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In order to state the Briançon-Skoda theorem, we recall the definition of the
integral closure of an ideal.

Definition 2.12. Let I be an ideal of a ring A.

(1) We say that an element x ∈ A is integral over I if there exist some n ∈ N

and ai ∈ Ii for i = 1, . . . , n such that xn + a1x
n−1 + a2x

n−2 + · · ·+ an = 0.
This condition is equivalent to saying that there exists some c ∈ A◦ such
that cxn ∈ In for all sufficiently large n ∈ N ([64, Corollary 6.8.12]).

(2) The set of elements of A integral over I is called the integral closure of I
and denoted by I. We say that I is integrally closed if I = I.

By definition, the tight closure I∗ of an ideal I of R is contained in the integral
closure I of I. The name of tight closure comes from this fact. It is natural to ask
how small the tight closure I∗ is when compared with the integral closure I.

The Briançon-Skoda theorem was originally proved for convergent power series
rings over the field of complex numbers C. We now formulate an analogous state-
ment for an arbitrary ring of positive characteristic, using tight closure. This tight
closure version of the Briançon-Skoda theorem gives a simple alternative proof of
the original Briançon-Skoda theorem by using reduction to positive characteristic
(see Section 3.3 for the technique of reduction to positive characteristic).

Theorem 2.13 (Tight closure version of the Briançon-Skoda theorem). Let I be an

ideal of R generated by n elements. Then for every l ∈ N, we have In+l−1 ⊂ (I l)∗.

We show this theorem in the case where l = 1 for simplicity. For x ∈ In, there
exists a c ∈ R◦ such that cxm ∈ (In)m = Imn for all sufficiently large m ∈ N. Since
I is generated by n elements, I(q−1)n+1 ⊆ I [q] for every power q of p. If m = q is a
power of p, then cxq ∈ Iqn ⊆ I [q]. Thus, x ∈ I∗.

Before stating a corollary of Theorem 2.13, note that a reduced local ring R is
normal if and only if the principal ideal (a) is integrally closed for every a ∈ R◦.
Considering the case when n = l = 1 in Theorem 2.13, we obtain the following
result.

Corollary 2.14. If I is a principal ideal of R, we have I∗ = I. In particular, if R
is F -rational, then R is normal.

In order to show that F -rational rings are Cohen-Macaulay, we need the following
“colon capturing” property of tight closure.

Theorem 2.15. Let (R,m) be a d-dimensional equidimensional local ring, and sup-
pose that R is a homomorphic image of a Cohen-Macaulay local ring. Let x1, . . . , xd

be a full system of parameters for R. Then for every i = 0, 1, . . . , d− 1, one has

(x1, . . . , xi) : xi+1 ⊂ (x1, . . . , xi)
∗,

where the ideal (x1, . . . , xi) is regarded as the zero ideal when i = 0.

Since F -rational rings are normal by Corollary 2.14, F -rational local rings are
integral domains. Also, note that excellent local rings are homomorphic images of
Cohen-Macaulay local rings. Therefore, we have the following corollary.

Corollary 2.16. If (R,m) is an excellent F -rational local ring, then R is Cohen-
Macaulay. In particular, every F -rational ring essentially of finite type over a field
is Cohen-Macaulay.
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We have discussed the behavior of the tight closure of ideals. Now we turn our
attention to the tight closure of modules. Given an R-module M and its submodule
N , we can define the tight closure N∗

M of N in M . In this article, we only consider
the case where N = 0 for simplicity.7

In order to state the definition of the tight closure of modules, we need to in-
troduce some notation. Given an R-module M and an e ∈ N, the R-module F e

∗M
is defined by the following two conditions: (1) F e

∗M = M as an abelian group,
(2) the R-module structure of F e

∗M is given by r · x := rp
e

x with r ∈ R and
x ∈ F e

∗M . We write elements of F e
∗M in the form F e

∗x with x ∈ M . If X = SpecR
and F : X → X is the (absolute) Frobenius morphism on X, then F e

∗R is the
R-module corresponding to F e

∗OX . By definition, the e-times iterated Frobenius
map F e : R → F e

∗R sending x to F e
∗ (x

pe

) = x ·F e
∗ 1 is an R-module homomorphism.

Definition 2.17. Let M be a (not necessarily finitely generated) R-module. For
every e ∈ N, let F e : R → F e

∗R be the e-times iterated Frobenius map. F e induces
the e-th Frobenius map on M

F e
M : M → M ⊗R F e

∗R x �→ x⊗ F e
∗ 1.

Then the tight closure 0∗M of the zero submodule in M is defined as follows: an
element x ∈ M belongs to 0∗M if and only if there exists some c ∈ R◦ such that
cF e

M (x) = 0 for all sufficiently large e ∈ N.8

Weak F -regularity and F -rationality can be characterized in terms of 0∗M . If
0∗M = 0 for every finitely generated R-module M , then R is weakly F -regular,
because 0∗R/I = I∗/I ⊆ R/I. The converse also holds under the mild assumption

that R is locally excellent. A d-dimensional excellent local ring (R,m) is F -rational
if and only if R is Cohen-Macaulay and 0∗Hd

m(R) = 0 (see Proposition 3.9). Also,

an F -finite local ring (R,m) is strongly F -regular if and only if 0∗ER(R/m) = 0

where ER(R/m) is the injective hull of the residue field R/m (see the definitions of
F -finiteness and of strongly F -regular rings in Section 3.1).

The Frobenius map F : R → R sending r to rp induces a p-linear map Hd
m(R) →

Hd
m(R).9 We denote this p-linear map by the same letter F if it does not cause

any confusion. Karen Smith gave a characterization of F -rational rings using this
Frobenius action F on Hd

m(R).

Theorem 2.18 ([112]). Let (R,m) be a d-dimensional excellent local ring of char-
acteristic p > 0. Then R is F -rational if and only if R is Cohen-Macaulay and
Hd

m(R) has no proper non-trivial submodules stable under the Frobenius action F .

Lipman and Teissier [82] introduced the notion of pseudo-rational rings as a
resolution-free and characteristic-free analogue of rational singularities. Let A be
a homomorphic image of an excellent Gorenstein local ring. We say that A is
pseudo-rational if A is normal Cohen-Macaulay and if π∗ωY = ωX for every proper
birational morphism π : Y → X = SpecA with Y normal. A non-local ring is
pseudo-rational if all of its localizations at maximal ideals are pseudo-rational. It
is well known that pseudo-rationality is equivalent to rational singularities for rings
essentially of finite type over a field of characteristic zero.

7Since there exists an isomorphism N∗
M/N ∼= 0∗

M/N
, we can reduce to the case where N = 0.

8For an ideal I of R, if we put M = R/I, then the tight closure of 0 in M agrees with I∗/I.
9For an R-module M , we say that a map ϕ : M → M is p-linear if ϕ is additive and ϕ(rz) =

rpϕ(z) with r ∈ R and z ∈ M .
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As a corollary of Theorem 2.18, Smith proved that F -rationality implies pseudo-
rationality.

Corollary 2.19 ([112]). Excellent F -rational rings are pseudo-rational.

In Section 3.2, we will explain that there is a more geometric way to show this
result in the case where R is F -finite.

3. Classical F -singularities

F -regular and F -rational rings have origin in the theory of tight closure as we
have seen in the previous section, but they are nowadays recognized as one of
the classes of F -singularities. “F -singularities” are a generic term used to refer
to singularities defined in terms of Frobenius maps. In addition to F -regular and
F -rational rings, there are two other basic classes of F -singularities, F -pure and
F -injective rings. In this section, we will overview these 4 classes of singularities
from a more algebro-geometric point of view than in Section 2. Roughly speaking,
they are divided into two groups, singularities defined via splittings of Frobenius
maps and singularities defined via surjectivity of trace maps.

Let R be a ring of prime characteristic p. We say that R is F -finite if F∗R is
a finitely generated R-module (see the paragraph preceding Definition 2.17 for the
definition of F∗R). A field K is F -finite if and only if the extension degree [K : Kp]
is finite. Important examples of F -finite rings are rings essentially of finite type
over an F -finite field and complete local rings with F -finite residue field. F -finite
rings satisfy the following nice property.

Fact 3.1 ([76], [24]). F -finite rings are excellent and have a dualizing complex.

3.1. Singularities defined in terms of Frobenius splitting. Suppose that R
is a ring of prime characteristic p. For each e ∈ N, the e-times iterated Frobenius
map F e : R → F e

∗R is the R-module homomorphism sending x to F e
∗x

pe

= x ·F e
∗ 1.

We make the following easy remark, which may help the reader understand various
definitions in this section: when R is reduced with minimal prime ideals p1, . . . , pr,

R ↪→
r∏

i=1

R/pi ↪→
r∏

i=1

Q(R/pi)

and the map F e can be identified with the natural inclusion

R ↪→ R1/pe

=

{
x ∈

r∏
i=1

Q(R/pi)

∣∣∣∣∣ xpe ∈ R

}
,

where Q(R/pi) is the algebraic closure of the quotient field Q(R/pi) of R/pi.

Definition 3.2 ([59], [55]). Let R be an F -finite ring of prime characteristic p. We
say that R is F -pure if the Frobenius map F : R → F∗R splits as an R-module
homomorphism. We say that R is strongly F -regular if for every c ∈ R◦, there
exists some e ∈ N such that the map

cF e : R
F e

−−→ F e
∗R

×F e
∗ c−−−→ F e

∗R x �→ F e
∗ (x

pe

) �→ F e
∗ (cx

pe

)

splits as an R-module homomorphism.
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Since the splitting of F e : R → F e
∗R for some e ∈ N implies that of F : R → F∗R,

we see that strongly F -regular rings are F -pure by considering the case when c = 1.
Note also that if the map F : R → F∗R splits, then it has to be injective. Thus,
F -pure rings are reduced.

Example 3.3. Let R = k[x1, . . . , xd] be a polynomial ring over a perfect field k of
characteristic p > 0. Then R is strongly F -regular. Indeed, let c be any non-zero
polynomial of R. Take a sufficiently large e ∈ N such that the degree of c in xj

is less than pe for all j = 1, . . . , d. In particular, c has a term axm1
1 · · ·xmd

d with

mj < pe and a ∈ k∗. Since F e
∗R =

⊕
0≤i1,...,id<pe R ·F e

∗ (x
i1
1 · · ·xid

d ), there exists an
R-module homomorphism ϕ : F e

∗R → R such that

ϕ(F e
∗ (x

i1
1 · · ·xid

d )) =

{
1 if (i1, . . . , id) = (m1, . . . ,md),
0 if (i1, . . . , id) �= (m1, . . . ,md) and 0 ≤ i1, . . . , id < pe.

Then ϕ(F e
∗ c) = a1/p

e

and a−1/pe

ϕ gives a splitting of cF e : R → F e
∗R.

More generally, we can show the following proposition, which is an easy conse-
quence of Theorem 2.2.

Proposition 3.4 ([55]). F -finite regular rings are strongly F -regular.

Remark 3.5. (1) Strong F -regularity implies F -regularity defined in Definition 2.4.
Indeed, since strong F -regularity commutes with localization, it suffices to show
that a strongly F -regular ring R is weakly F -regular. Let I be an arbitrary ideal in
R, and fix an x ∈ I∗. We will show that x ∈ I. By definition, there is a c ∈ R◦ such
that cxpe ∈ I [p

e] for all sufficiently large e ∈ N. By the assumption on R, there exist
an e ∈ N, which can be made sufficiently large, and an R-module homomorphism
ψ : F e

∗R → R sending F e
∗ c to 1. Therefore,

x = xψ(F e
∗ c) = ψ(F e

∗ (cx
pe

)) ∈ ψ(F e
∗ (I

[pe])) = Iψ(F e
∗R) ⊂ I.

Conversely, it is conjectured that an F -finite weakly F -regular ring R is strongly
F -regular. This conjecture is known to be true when R is Q-Gorenstein (see [3])10

or R is an N-graded ring (see [83]).
(2) It is not hard to see that an F -finite ring R is strongly F -regular (respectively,

F -pure) if and only if so is the local ring Rp for every maximal ideal p in R. In
particular, if m is a maximal ideal of R and Rp is regular for all other maximal
ideals p �= m, then R is strongly F -regular if and only if Rm is strongly F -regular.

It is usually difficult to determine directly from the definition whether a given
ring R is strongly F -regular or not, because we have to check the condition for
all c ∈ R◦. Pick an element c ∈ R◦ such that the localization Rc is regular. It
then follows from Proposition 3.4 and Lemma 3.6 that R is strongly F -regular if
(and only if) there is an e ∈ N such that cF e : R → F e

∗R splits as an R-module
homomorphism. Namely, it suffices to check the condition only for this c.

Lemma 3.6 ([55]). Let R be an F -finite reduced ring of characteristic p > 0 and
c ∈ R◦ an element such that the localization Rc is strongly F -regular. If there exists
an e ∈ N such that cF e : R → F e

∗R splits as an R-module homomorphism, then R
is strongly F -regular.

10When R is local, the conjecture holds if the non-Q-Gorenstein locus of SpecR is isolated
(cf. [84]).
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The following proposition, the so-called Fedder’s criterion, is a very useful crite-
rion for strong F -regularity and F -purity.

Proposition 3.7 ([19], [26]). Let (S, n) be an F -finite regular local ring and I a
radical ideal of S. Set R = S/I and let c ∈ S \ I be an element such that the
localization Rc is strongly F -regular.

(1) R is F -pure if and only if (I [p] : I) �⊂ n[p].
(2) R is strongly R-regular if and only if there exists some e ∈ N such that

c(I [p
e] : I) �⊂ n[p

e].

It is easier to verify the conditions in Proposition 3.7 when R is a hypersurface,
because if I = (f) is a principal ideal, then (I [p

e] : I) = (fpe−1).

Example 3.8. Let k be a perfect field of characteristic p > 0.
(1) Let R = k[X,Y, Z]/(X3 − Y Z(Y + Z)) and x, y, z be the images of X,Y, Z

in R, respectively. Then we will show that R is F -pure if and only if p ≡ 1 mod 3.
Since R is singular only at the origin, by Remark 3.5 (2), it suffices to check the

F -purity of the local ring Rm where m = (x, y, z). Setting f = X3−Y Z(Y +Z), we
see from Proposition 3.7 (1) that Rm is F -pure if and only if fp−1 /∈ (Xp, Y p, Zp).
Note that fp−1 /∈ (Xp, Y p, Zp) if and only if the monomial Xp−1Y p−1Zp−1 appears
in the expansion of fp−1. If p ≡ 1 mod 3, then Xp−1Y p−1Zp−1 appears in the
expansion of fp−1. If p = 3 or p ≡ 2 mod 3, then it does not. Thus, we obtain the
assertion.

It also follows from Proposition 3.7 (2) that R is not strongly F -regular, because
Xfpe−1 ∈ (Xpe

, Y pe

, Zpe

) for all e ∈ N.
(2) Let R = k[X,Y, Z]/(X2 + Y 3 + Z5), and suppose that p ≥ 7. Then we will

show that R is strongly F -regular.
By Remark 3.5 (2), it suffices to check the strong F -regularity of R at the

origin. Set f = X2 + Y 3 + Z5. By Proposition 3.7 (2), it is enough to show
that either Y fp−1 or Zfp−1 is not contained in (Xp, Y p, Zp). If p ≡ 1 mod 3,
then the monomial Xp−1Y p−1Z(5p+1)/6 appears in the expansion of Zfp−1. Since
(5p+1)/6 ≤ p− 1, this monomial is not contained in (Xp, Y p, Zp). If p ≡ 2 mod 3,
then p ≥ 11 and the monomial Xp−1Y p−1Z(5p+5)/6 appears in the expansion of
Y fp−1. Since (5p+ 5)/6 ≤ p− 1, this monomial is not contained in (Xp, Y p, Zp).
Thus, we obtain the assertion.

3.2. Singularities defined in terms of surjectivity of trace maps. Let (R,m)
be a d-dimensional local ring of prime characteristic p. The Frobenius map F : R →
F∗R induces an R-linear map between local cohomology modules:

Hi
m(R) = R⊗R Hi

m(R) → F∗R ⊗R Hi
m(R) ∼= Hi

m(F∗R).

Under the identification of F∗R with R, we view this map as a p-linear map
Hi

m(R) → Hi
m(R), and we use the same letter F to denote this p-linear map. Let

x1, . . . , xd be a system of parameters for R. Since Hd
m(R) ∼= lim−→R/(xn

1 , . . . , x
n
d ), the

map F on Hd
m(R) can be described as follows:

F : Hd
m(R) → Hd

m(R) ξ = [z mod (xn
1 , . . . , x

n
d )] �→ ξp = [zp mod (xnp

1 , . . . , xnp
d )].

The following proposition, which one may take as the definition of F -rational
rings, immediately follows from this description.
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Proposition 3.9. Let (R,m) be a d-dimensional F -finite local ring. Then R is
F -rational (see Definition 2.4 for the definition of F -rational rings) if and only if
R is Cohen-Macaulay and if for any c ∈ R◦, there exists an e ∈ N such that

cF e : Hd
m(R) → Hd

m(R) ξ �→ cξp
e

is injective.

Definition 3.10 ([19]). A d-dimensional F -finite local ring (R,m) is said to be
F-injective if F : Hi

m(R) → Hi
m(R) is injective for all i. When an F -finite ring R is

not local, we say that R is F -injective if the local ring Rp is F -injective for every
maximal ideal p of R.

By an argument analogous to the proof that strongly F -regular rings are F -
pure, we see that F -rational rings are F -injective. Moreover, there is the following
relationship between strongly F -regular (respectively, F -pure) rings and F -rational
(respectively, F -injective) rings.

Proposition 3.11. F -pure (respectively, strongly F -regular) rings are F -injective
(respectively, F -rational). If the ring is F -finite and quasi-Gorenstein, then the
converse is also true.

Proposition 3.11 follows from Lemma 3.12: If a d-dimensional F -finite local
ring (R,m) is F -pure, then by Lemma 3.12 (2) ⇒ (3), F ⊗ idHi

m(R) : Hi
m(R) →

F∗R⊗RHi
m(R) is injective for each i, in other words, R is F -injective. If R is quasi-

Gorenstein, then E ∼= Hd
m(R), so that F -injectivity implies F -purity by Lemma

3.12 (1) ⇒ (4). The strongly F -regular case is similar: As explained in Remark
3.5, strong F -regularity implies weak F -regularity and in particular F -rationality.
If R is Gorenstein, then E ∼= Hd

m(R), so that F -rationality implies the strong F -
regularity by an analogous statement to Lemma 3.12 for strongly F -regular rings.

The following lemma is a direct consequence of the definition of F -purity and
Matlis duality.

Lemma 3.12. Let (R,m) be a d-dimensional F -finite local ring and E = Hd
m(ωR)

the injective hull of the residue field R/m. Then the following conditions are equiv-
alent to each other:

(1) R is F -pure.
(2) The R-dual of the Frobenius map F∨ : HomR(F∗R,R) → HomR(R,R) = R

is surjective.
(3) For any R-module M , F ⊗ idM : M = R ⊗R M → F∗R⊗R M is injective.
(4) F ⊗ idE : E = R ⊗R E → F∗R⊗R E is injective.

A similar statement holds for strongly F -regular rings.

Note that F -finite F -rational rings are normal by Corollary 2.14. On the other
hand, F -finite F -injective rings are not necessarily normal. Before stating the next
proposition, we recall the definition of weakly normal rings. Since we are working
in positive characteristic, we take the following characterization of weak normality
given in [100] as its definition. Let R be an excellent reduced ring of characteristic
p > 0 and RN be the normalization of R. We say that R is weakly normal if for
any x ∈ RN, if xp ∈ R, then x ∈ R.

Proposition 3.13 ([103]). F -finite F -injective rings are weakly normal.

In the process of proving Proposition 3.13, we obtain the following example.
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Example 3.14 ([103], [30]). A one-dimensional F -finite reduced ring is F -injective
if and only if it is weakly normal. Furthermore, suppose that R is a one-dimensional
F -finite reduced local ring with perfect residue field. Then R is F -pure if and only if
it is weakly normal. If R is a one-dimensional complete local ring with algebraically
closed residue field k, then R is isomorphic to k[[X1, . . . , Xr]]/(XiXj | i < j), where
r is the number of associated prime ideals of R.

Summing up the above, we have seen that the following implications hold for
F -finite rings:

regular �� strongly F -regular ��

��

F -rational ��

+quasi-Gorenstein

��

��

CM & normal

��
F -pure �� F -injective ��

+quasi-Gorenstein

�� weakly normal,

where “CM” is an abbreviation for Cohen-Macaulay.
There is no criteria for F -rationality such as Proposition 3.7, but as we see

in the following proposition, we can determine using the a-invariant11 whether a
given graded ring is F -rational or not. This should be compared with a criterion
for rational singularities given in [21], [123].

Proposition 3.15 ([56]). Let R =
⊕

n≥0 Rn be a d-dimensional graded ring with

R0 a field of characteristic p > 0 and m =
⊕

n≥1 Rn. Then R is F -rational if and

only if the following 4 conditions are satisfied: (1) R is Cohen-Macaulay, (2) R is
F -injective, (3) Rp is F -rational for every prime ideal p �= m, (4) a(R) < 0 (the
condition (4) can be replaced by the condition that [Hd

m(R)]0 = 0 in this setting).

Example 3.16. Let k be an algebraically closed field of characteristic p > 0 with
p ≡ 1 mod 3 and S = k[X,Y, Z]/(X3 − Y Z(Y +Z)). We have seen in Example 3.8
that S is F -pure. Let ω ∈ k be a primitive cube root of unity, and suppose that
the cyclic group G = Z/3Z of order 3 acts on S as x �→ x, y �→ ωy, z �→ ωz, where
x, y, z are the images of X,Y, Z in S, respectively. Then the invariant subring

R := SG = k[X,Y 3, Y 2Z, Y Z2, Z3]/(X3 − Y Z(Y + Z))

is F -rational. Indeed, since S is a two-dimensional normal ring, so is R. In partic-
ular, R is a Cohen-Macaulay isolated singularity. Hence, the conditions (1) and (3)
in Proposition 3.15 are satisfied. Since S is F -pure, R is also F -pure by Lemma
3.17 (1), which implies the condition (2). In order to show that R satisfies the con-
dition (4), note that the third Veronese subring R(3) of R is isomorphic to the third
Veronese subring A(3) = k[Y 3, Y 2Z, Y Z2, Z3] of the polynomial ring A = k[Y, Z].
Denoting by m the unique homogeneous maximal ideal of R, one has

[H2
m(R)]0 = [H2

m(R
(3))]0 ∼= [H2

(Y,Z)(A
(3))]0 = [H2

(Y,Z)(A)]0 = 0.

Thus, it follows from Proposition 3.15 that R is F -rational. On the other hand, R
is not strongly F -regular by Lemma 3.17 (2), because S is not strongly F -regular
as we have seen in Proposition 3.15.

11See the footnote to Remark 2.11 for the definition of the a-invariant.
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Lemma 3.17. Let A ⊂ B be an extension of F -finite rings such that A◦ ⊆ B◦,
and suppose that A is a pure subring of B.

(1) ([47]) If B is F -pure (respectively, strongly F -regular), then so is A.
(2) ([124]) Suppose that A and B are both normal and that the extension A ⊂ B

is étale in codimension one.12 Then A is F -pure (respectively, strongly F -
regular) if and only if so is B.

Example 3.18. Let S = k[X,Y, Z]/(X4 + Y 4 + Z4) where k is a perfect field of
characteristic p > 0 with p ≡ 1 mod 4. It is easy to see from Proposition 3.7 that
S is not F -pure. Therefore, the second Veronese subring

R := S(2) = k[X2, XY,XZ, Y 2, Y Z, Z2]/(X4 + Y 4 + Z4)

of S is also not F -pure by Lemma 3.17 (2). We will show that R is F -injective.
Let A = k[X,Y, Z] and f = X4 + Y 4 + Z4 ∈ A. Let mA,mR and mS denote

the unique homogeneous maximal ideals of A, R and S, respectively. Consider a
commutative diagram with exact rows

0 �� A
×f ��

fp−1F
��

A ��

F
��

S ��

F
��

0

0 �� A
×f �� A �� S �� 0.

This diagram induces the following commutative diagram with exact rows:

0 �� H2
mS

(S) ��

F

��

H3
mA

(A)
×f ��

fp−1F

��

H3
mA

(A)

F

��
0 �� H2

mS
(S) �� H3

mA
(A)

×f �� H3
mA

(A).

By the commutativity of this diagram, the Frobenius map F : H2
mS

(S) → H2
mS

(S)

on H2
mS

(S) can be identified with fp−1F : (0 : f)H3
mA

(A) → (0 : f)H3
mA

(A).

Suppose that ξ = [g/(XY Z)m] ∈ H3
mA

(A) is a homogeneous element such that

fp−1F (ξ) = 0, that is, fp−1gp ∈ (Xmp, Y mp, Zmp). Since p ≡ 1 mod 4, the mono-
mial X2(p−1)Y p−1Zp−1 = Xp(Xp−2Y p−1Zp−1) appears with a non-zero coefficient
c ∈ k in the expansion of fp−1. Let ϕ : F∗A → A be the A-linear map sending
F∗(X

p−2Y p−1Zp−1) to c−1/p and the other members of the free basis to zero. Then

Xg = ϕ(F∗f
p−1)g = ϕ(F∗(f

p−1gp)) ∈ ϕ(F∗(X
mp, Y mp, Zmp)) ⊂ (Xm, Y m, Zm).

One can show similarly that Y g and Zg lie in (Xm, Y m, Zm). Namely, mAg is
contained in (Xm, Y m, Zm), which is equivalent to saying that mAξ = 0. Since A
is a three-dimensional polynomial ring, this means that deg ξ ≥ −3.

Taking into consideration the fact that [H2
mS

(S)]n ∼= [(0 : f)H3
mA

(A)]n−4 for each

n ∈ Z, one has that F : H2
mS

(S) → H2
mS

(S) is injective in non-positive degrees,

and then so is F : H2
mR

(R) → H2
mR

(R). Since [H2
mR

(R)]n ∼= [H2
mS

(S)]2n = 0 for all

n ≥ 1, we can conclude that the Frobenius map F : H2
mR

(R) → H2
mR

(R) is injective
in all degrees. Thus, R is F -injective.

12An analogous statement holds even when A ⊂ B is not étale in codimension one. The reader
is referred to [108] for the details.
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LetR be an F -finite local ring. The trace map TrF : F∗ωR → ωR of the Frobenius
map on R is the ωR-dual of the Frobenius map F : R → F∗R:

TrF : F∗ωR
∼= HomR(F∗R,ωR) → HomR(R,ωR) = ωR,

where the first isomorphism follows from Grothendieck-Serre duality. For each
e ∈ N, the map TreF : F e

∗ωR → ωR is defined by TreF = TrF ◦F∗TrF ◦ · · · ◦F e−1
∗ TrF ,

which is nothing but the ωR-dual of the e-times iterated Frobenius F e : R → F e
∗R.

When R is Cohen-Macaulay, F -injectivity and F -rationality are characterized in
terms of the subjectivity of the trace of Frobenius. This is an easy consequence of
local duality.

Proposition 3.19. Let R be an F -finite reduced local ring.

(1) If R is F -injective, then TrF : F∗ωR → ωR is surjective. When R is Cohen-
Macaulay, the converse is also true.

(2) R is F -rational if and only if R is Cohen-Macaulay and if for any c ∈ R◦,
there exists an e ∈ N such that

cTreF : F e
∗ωR

×F e
∗ c−−−→ F e

∗ωR
TreF−−→ ωR F e

∗x �→ F e
∗ (cx) �→ TreF (F

e
∗ (cx))

is surjective.

A morphism π : Y → X of integral schemes is called an alteration if π is a
generically finite proper surjective morphism. It is called a regular alteration if Y is
a regular scheme. It follows from Stein factorization that an alteration π : Y → X

factors as Y
f−→ Z

g−→ X, where f is a proper birational morphism and g is a finite
morphism. Then the trace map Trπ : π∗ωY → ωX of π is the composite of Trf and
Trg, where the trace map Trf : f∗ωY → ωZ of f is a natural inclusion and the trace
map Trg : g∗ωZ → ωX of g is the ωX -dual of OX → g∗OZ :

g∗ωZ
∼= HomOX

(g∗OZ , ωX) → HomOX
(OX , ωX) = ωX .

Rational singularities in characteristic zero and F -rational rings in characteristic
p > 0 have a common characterization in terms of the surjectivity of the trace map
Trπ : π∗ωY → ωX for every regular alteration π : Y → X.

Theorem 3.20 ([7]). Let R be an F -finite Cohen-Macaulay domain. Then the
following conditions are equivalent to each other:

(1) R is F -rational.
(2) For any finite extension R ⊂ S, its trace map ωS → ωR is surjective.
(3) For any alteration π : Y → X = SpecR, the trace map Trπ : π∗ωY → ωX

of π is surjective.

If R is of finite type over a perfect field, then we may take π to be a regular separable
alteration in (3).

Under the assumption of F -finiteness, Corollary 2.19 immediately follows from
Theorem 3.20 (1) ⇒ (3).

3.3. Reduction from characteristic zero to positive characteristic. We can
define the notion of F -singularities in characteristic zero, using reduction from
characteristic zero to positive characteristic. First we briefly review how to reduce
things from characteristic zero to characteristic p > 0. Our main references are [58,
Chapter 2] and [93, Section 3.2].
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Let R be a ring of finite type over a field k of characteristic zero. There ex-
ist finitely many polynomials fi =

∑
j aijX

j ∈ k[X1, . . . , Xn] such that R ∼=
k[X1, . . . , Xn]/(f1, . . . , fr). Let A = Z[aij ] ⊆ k be the Z-subalgebra generated by

the coefficients of the fi and RA = A[X1, . . . , Xn]/(f1, . . . , fr). Then RA⊗A k ∼= R.
Applying the generic freeness ([85, Theorem 24.1]), after possibly replacing A by
the localization Aa with respect to some element a ∈ A, we may assume that RA

is flat over A. Such a ring RA is referred to as a model of R over A. For a closed
point μ ∈ SpecA, denote by Rμ the closed fiber RA ⊗A A/μ of the natural map
A → RA over μ. Note that Rμ is F -finite, because RA is of finite type over the finite
field A/μ. If R is regular (respectively, Q-Gorenstein, Cohen-Macaulay, normal),
after possibly replacing A by a localization Aa, we may assume that RA is regular
(respectively, Q-Gorenstein, Cohen-Macaulay, normal), and then so is Rμ for all
closed points μ ∈ SpecA.

When X is a scheme of finite type over k, we can similarly define a scheme
XA of finite type over a finitely generated Z-subalgebra A of k and a scheme Xμ

of finite type over A/μ for each closed point μ ∈ SpecA. Given a morphism
f : X → Y of schemes of finite type over k and models XA and YA of X and Y
over A, respectively, after enlarging A if necessary, we may assume that f induces
a morphism fA : XA → YA of schemes of finite type over A. Then we can define
a morphism fμ : Xμ → Yμ of schemes of finite type over A/μ for each closed
point μ ∈ SpecA. If f is a projective morphism (respectively, a finite morphism),
after possibly enlarging A again, we may assume that fμ is projective (respectively,
finite) for all closed points μ ∈ SpecA.

Suppose that X is a normal variety over k and D =
∑

i diDi is a Q-divisor on X.
Taking a model Di,A ⊂ XA of Di over A for each i, we say that DA :=

∑
i diDi,A

is a model of D over A. After enlarging A if necessarily, we may assume that Di,μ

is a prime divisor on the normal variety Xμ for every closed point μ ∈ SpecA.
Then Dμ :=

∑
i diDi,μ is a Q-divisor on Xμ. If D is Cartier (respectively, Q-

Cartier), then after possibly enlarging A again, we may assume that Dμ is Cartier
(respectively, Q-Cartier) for every closed point μ ∈ SpecA.

Definition 3.21. Let R be a ring essentially of finite type over a field k of char-
acteristic zero. Suppose we are given a model RA of R over a finitely generated
Z-subalgebra A of k. We say that R is of F -rational type (respectively, strongly
F -regular type) if there exists a dense open subset S ⊂ SpecA such that Rμ is
F -rational (respectively, strongly F -regular) for all closed points μ ∈ S. We say
that R is of dense F -injective type (respectively, dense F -pure type) if there exists a
dense subset of closed points S ⊂ SpecA such that Rμ is F -injective (respectively,
F -pure) for all μ ∈ S. These definitions are independent of the choice of RA.

Example 3.22. (1) Let R = C[X,Y, Z]/(X3 − Y Z(Y + Z)). Then the ring RZ =
Z[X,Y, Z]/(X3 − Y Z(Y +Z)) is a model of R over Z. We take the dense subset S
of SpecZ to be {p ∈ SpecZ | p ≡ 1 mod 3}. Since we have seen in Example 3.8 (1)
that Rp = Fp[X,Y, Z]/(X3 − Y Z(Y + Z)) is F -pure for all p ∈ S, the ring R is of
dense F -pure type.

(2) Let R = C[X,Y, Z]/(X2+Y 3+Z5). The ring RZ = Z[X,Y, Z]/(X2+Y 3+Z5)
is a model of R over Z. Note that S = {p ∈ SpecZ | p ≥ 7} ∪ {0} is a dense open
subset of SpecZ. Since Rp = Fp[X,Y, Z]/(X2 + Y 3 +Z5) is strongly F -regular for
all closed points p ∈ S by Example 3.8 (2), the ring R is of strongly F -regular type.
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F -singularities (partly conjecturally) correspond to singularities arising in bira-
tional geometry in characteristic zero. Before explaining this correspondence, we
first explain what kind of singularities in characteristic zero are considered. The
following implications hold for singularities in characteristic zero:

non-singular �� log terminal ��

��

rational ��

+quasi-Gorenstein

��

��

CM & normal

��
log canonical �� Du Bois ��

+quasi-Gorenstein

		 semi-normal

The reader is referred to Section 4.1 for the definition of log terminal and log
canonical singularities and to [73], [74], [71] for Du Bois singularities. The definition
of Du Bois singularities are a bit involved, but a simple characterization of them
was given in [101] when they are Cohen-Macaulay and normal: Let R be a Cohen-
Macaulay normal domain essentially of finite type over a field of characteristic zero.

Let π : X̃ → X be a log resolution of X = SpecR, that is, π is a proper birational

morphism with X̃ non-singular such that the exceptional locus E of π is a simple
normal crossing divisor. Then X has only Du Bois singularities if and only if
π∗ω ˜X(E) = ωX .

We also briefly explain the definition of semi-normal rings. Let R be an excellent
reduced ring and RN be the normalization of R. We say that R is semi-normal
if for any x ∈ RN, if x2, x3 ∈ R, then x ∈ R. In equal characteristic zero, weak
normality is equivalent to semi-normality, whereas weak normality is a strictly
stronger condition than semi-normality in positive characteristic.

As the name suggests, there is a correspondence between F -rational rings and
rational singularities.

Theorem 3.23 ([38], [87]). Let R be a ring essentially of finite type over a field of
characteristic zero. Then SpecR has only rational singularities if and only if R is
of F -rational type.

Let us say a few words about the proof of Theorem 3.23. The “if” part follows
from Corollary 2.19. The following lemma, a consequence of Serre’s vanishing
theorem and Deligne-Illusie’s result [15] on Akizuki-Kodaira-Nakano’s vanishing
theorem in characteristic p > 0, is essential in the proof of the “only if” part.

Lemma 3.24 ([38]). Let R be a ring essentially of finite type over a field k of

characteristic zero. Let π : X̃ → X be a log resolution of X = SpecR and E be a
π-ample Q-divisor on X whose fractional part E−�E� has simple normal crossing

support. Suppose that we are given models πA : X̃A → XA and EA over a finitely
generated Z-subalgebra A of k. Then there exists a dense open subset S ⊂ SpecA
such that for every closed point μ ∈ S and every e ∈ N, the map

F e
∗πμ∗ω ˜Xμ

(�peEμ�) → πμ∗ω ˜Xμ
(�Eμ�),

induced by the trace map TreF : F e
∗ω ˜Xμ

→ ω
˜Xμ
, is surjective.

Theorem 3.25 ([103]). If a ring R essentially of finite type over a field of charac-
teristic zero is of dense F -injective type, then SpecR has only Du Bois singularities.
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Since F -injective rings and Du Bois singularities share many similar properties,
the converse of Theorem 3.25 is also expected to be true. However, to the best of
our knowledge, Conjecture 3.26 is open even when R is a two-dimensional normal
local ring.

Conjecture 3.26. Let R be a ring essentially of finite type over a field of char-
acteristic zero. Then SpecR has only Du Bois singularities if and only if R is of
dense F -injective type.

We will explain a correspondence between strongly F -regular rings (respectively,
F -pure rings) and log terminal singularities (respectively, log canonical singulari-
ties) in the next section.

4. F -singularities of pairs

In the minimal model program, singularities are studied in the pair setting:
instead of looking only at singularities of a single variety, one should consider sin-
gularities of pairs (X,Δ) where X is a variety and Δ is a Q-divisor (that is, a
Q-linear combination of divisors) on X. Since there is a close relationship between
F -singularities and singularities in birational geometry as we have partly seen in
Section 3, we introduce “F -singularities of pairs”, that is, a generalization of F -
singularities to the pair setting.

4.1. Correspondence to singularities in the minimal model program. First
we recall the definition of singularities of pairs. Let X be a normal variety over a
field of characteristic zero and Δ =

∑
i diΔi be an effectiveQ-divisor onX such that

KX +Δ is Q-Cartier. The round down of Δ is �Δ� =
∑

i�di�Δi where �di� denotes
the largest integer less than or equal to di. The round up of Δ is �Δ� =

∑
i�di�Δi

where �di� denotes the smallest integer greater than or equal to di.

We take a log resolution π : X̃ → X of (X,Δ). Namely, π is a proper birational

morphism such that X̃ is a non-singular variety and that Exc(π) and Exc(π)∪π−1
∗ Δ

are simple normal crossing divisors, where Exc(π) denotes the exceptional locus of
π and π−1

∗ Δ does the strict transform of Δ.13 Then we can write

K
˜X = π∗(KX +Δ) +

∑
i

aiEi,

where the Ei are prime divisors on X̃ and ai are rational numbers. We say that the
pair (X,Δ) is Kawamata log terminal (klt, for short) if ai > −1 for all i and that
(X,Δ) is log canonical (lc, for short) if ai ≥ −1 for all i. Furthermore, suppose that
π−1
∗ �Δ� is non-singular (but possibly disconnected). Then we say that (X,Δ) is

purely log terminal (plt, for short) if ai > −1 for all i with Ei π-exceptional. These
definitions are independent of the choice of the log resolution π. If �Δ� = 0, then
by definition, being klt is equivalent to being plt. When (X, 0) is klt (respectively,
lc), we say that X has only log terminal (respectively, log canonical) singularities.
In general, the following implications hold for singularities of pairs:

klt �� plt �� lc.

The reader is referred to [72] for their basic properties.

13Such a π always exists by a famous theorem of Hironaka [51].
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Next, we generalize the definition of F -singularities to the pair setting. Let
X = SpecR be an F -finite normal integral affine scheme and D be an effective
integral divisor onX. We denote by F : X → X the (absolute) Frobenius morphism
on X. Since D is effective, we have a natural inclusion i : OX → OX(D). For each
e ∈ N, by the composition F e

∗ i and the e-times iterated Frobenius F e, we have the
following map:

OX
F e

−−→ F e
∗OX

F e
∗ i−−→ F e

∗OX(D) x �→ F e
∗x

pe �→ F e
∗x

pe

.

We define F -singularities of pairs using this map.

Definition 4.1 ([43], [102]). Let Δ be an effective Q-divisor on X.

(1) We say that (X,Δ) is F -pure if the map OX → F e
∗OX(�(pe − 1)Δ�) splits

as an OX -module homomorphism for every e ∈ N.
(2) We say that (X,Δ) is sharply F -pure if there exists an e ∈ N such that the

map OX → F e
∗OX(�(pe − 1)Δ�) splits as an OX -module homomorphism.

(3) We say that (X,Δ) is strongly F -regular if for every non-zero c ∈ OX , there
exists an e ∈ N such that the composite map

OX → F e
∗OX(�(pe − 1)Δ�) ×F e

∗ c−−−→ F e
∗OX(�(pe − 1)Δ�)

sending x to F e
∗ (cx

pe

) splits as an OX -module homomorphism.
(4) We say that (X,Δ) is purely F -regular14 if for every c ∈ OX which is not

in any minimal prime of OX(−�Δ�), there is an e ∈ N such that the map

OX → F e
∗OX(�(pe − 1)Δ�) ×F e

∗ c−−−→ F e
∗OX(�(pe − 1)Δ�)

sending x to F e
∗ (cx

pe

) splits as an OX -module homomorphism.

These definitions can be extended to non-affine schemes by considering the same
conditions on each affine chart.

If �Δ� = 0 (respectively, (pe − 1)Δ is an integral divisor for some e ∈ N), then
the pure F -regularity (respectively, the sharp F -purity) of (X,Δ) is equivalent to
its strong F -regularity (respectively, its F -purity). If Δ = 0, then the strong F -
regularity (respectively, the F -purity) of the pair (SpecR, 0) is nothing but the
strong F -regularity (respectively, the F -purity) of R defined in Definition 3.2. In
general, the following implications hold for F -singularities of pairs:

strongly F -regular �� purely F -regular �� sharply F -pure �� F -pure.

Remark 4.2. Why do we consider two kinds of “F -purity”, sharp F -purity and
F -purity? It is because both have advantages and disadvantages.

Let R be a (normal) F -pure ring and Δ be an effective Cartier divisor on X =
SpecR. Then

sup{t ≥ 0 | (X, tΔ) is F -pure} = sup{t ≥ 0 | (X, tΔ) is sharply F -pure}.
This critical value is called the F -pure threshold of Δ and denoted by fpt(Δ).
Since “F -pure” pairs can be viewed as a positive characteristic analogue of lc pairs
(see Conjecture 4.8), it is expected that (X, t0Δ) is “F -pure” where t0 = fpt(Δ).

14Purely F -regular pairs are called divisorially F -regular pairs in [43]. Since they correspond
to plt pairs, not to dlt pairs, we use the term “purely F -regular” to avoid giving a misleading
impression.
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By [50], (X, t0Δ) is F -pure but not necessarily sharply F -pure. For example, in
Example 4.5 (1), fpt(Δ) = 1/3 but (X, (1/3)Δ) is not sharply F -pure.

On the other hand, sharp F -purity fits better into the theory of F -pure centers
which we will discuss in Section 4.2. If we introduced the theory of F -pure centers
using F -purity not sharp F -purity, then a pathological phenomenon could happen.
Setting o = (x, y) ∈ SpecR = X in Example 4.5 (1), we easily see that the F -
pure pair (X, (1/3)Δ) is strongly F -regular except at o. Therefore, o should be
the unique F -pure center of (X, (1/3)Δ). However, if we changed the definition of
F -pure centers (Definition 4.13) by replacing sharp F -purity with F -purity, then
every irreducible component of Δ would be an F -pure center of (X, (1/3)Δ).

Sharp F -purity has one more advantage over F -purity. If (X,Δ) is lc, then
the multiplier ideal J (X,Δ) associated to (X,Δ) becomes a radical ideal. Since
test ideals are a positive characteristic analogue of multiplier ideals (see Section
5 for the details), it is expected that the test ideal τ (X,Δ) associated to (X,Δ)
is a radical ideal if (X,Δ) is “F -pure”. Indeed, if (X,Δ) is sharply F -pure, then
τ (X,Δ) becomes a radical ideal (see [102]). If (X,Δ) is only F -pure, then τ (X,Δ)
is not necessarily even an integrally closed ideal (see Example 5.7 (4)).

Proposition 4.3 ([43]). If (X,Δ) is strongly F -regular (respectively, F -pure), then
�Δ� = 0 (respectively, �Δ� is a reduced divisor).

A criterion analogous to Proposition 3.7 holds in the pair setting.

Proposition 4.4 (cf. [43]). Let (R,m) be an F -finite regular local ring, f ∈ R
be a non-zero element and t > 0 be a rational number. Put X = SpecR and
Δ = t div(f).

(1) (X,Δ) is F -pure if and only if f
t(pe−1)� /∈ m[pe] for all e ∈ N.
(2) (X,Δ) is sharply F -pure if and only if there exists some e ∈ N such that

f�t(pe−1)� /∈ m[pe].
(3) (X,Δ) is strongly F -regular if and only if there exists some e ∈ N such that

f�tpe� /∈ m[pe].
(4) Suppose that t = 1 and R/(f) is reduced. Choose an element c ∈ R \ (f)

such that the localization (R/f)c is strongly F -regular. Then (X,Δ) is
purely F -regular if and only if there exists e ∈ N such that cfpe−1 /∈ m[pe].

The following example easily follows from the above proposition. Note that
strong F -regularity (respectively, F -purity, weak F -purity, pure F -regularity) of
pairs can be checked locally (cf. Remark 3.5 (2)).

Example 4.5. (1) Let k be a perfect field of characteristic 3 and R = k[x, y] be
the two-dimensional polynomial ring over k. Put f = xy(x + y)(x − y) ∈ R and
Δ = div(f). Then the pair (SpecR, (1/3)Δ) is F -pure but not sharply F -pure.
Also, (SpecR, tΔ) is strongly F -regular for every 1/3 > t > 0.

(2) Let k be a perfect field of characteristic p > 0 and R = k[x, y, z] be the
three-dimensional polynomial ring over k. Put f = x3 − yz(y + z) ∈ R and Δ =
div(f). Then (SpecR,Δ) is F -pure (equivalently, sharply F -pure) if and only if
p ≡ 1 mod 3. Compare this with Example 3.8 (1).

(3) Let k be a perfect field of characteristic p > 5 and R = k[x, y, z] be the three-
dimensional polynomial ring over k. Put f = x2 + y3 + z5 ∈ R and Δ = div(f).
Then (SpecR,Δ) is purely F -regular. Compare this with Example 3.8 (2).
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Let X be a normal variety over a field of characteristic zero and Δ be an effective
Q-divisor on X such that KX +Δ is Q-Cartier. Let (XA,ΔA) be a model of (X,Δ)
over a finitely generated Z-subalgebra A of k. We say that (X,Δ) is of strongly
F -regular type (respectively, purely F -regular type) if there exists a dense open
subset T ⊂ SpecA such that (Xμ,Δμ) is strongly F -regular (respectively, purely
F -regular) for all closed points μ ∈ T . We also say that (X,Δ) is of dense F -pure
type if there exists a dense subset of closed points S ⊂ SpecA such that (Xμ,Δμ)
is F -pure for all μ ∈ S. If (X,Δ) is of dense F -pure type, then after possibly
shrinking S, we may assume that for every μ ∈ S, there exists some e(μ) ∈ N such
that (p(μ)e(μ) − 1)Δμ is an integral divisor. Thus, the definition of being of dense
F -pure type is equivalent to saying that there exists a dense subset of closed points
S ⊂ SpecA such that (Xμ,Δμ) is sharply F -pure for all μ ∈ S.

As we have promised at the end of Section 2, we state a correspondence between
strongly F -regular pairs and klt pairs. Lemma 3.24 plays a key role in the proof.

Theorem 4.6 ([116], [118]). The pair (X,Δ) is klt (respectively, plt) if and only if
it is of strongly F -regular type (respectively, purely F -regular type).

Theorem 4.7 ([43]). If the pair (X,Δ) is of dense F -pure type, then it is lc.

The converse of Theorem 4.7 is also expected to be true, but it is wide open
except in a few special cases.

Conjecture 4.8. The pair (X,Δ) is lc if and only if it is of dense F -pure type.

Conjecture 4.8 is known to be true in the following cases:

(1) ([86], [37], [43]) dimX = 2 and Δ is an integral divisor.
(2) ([49]) X = Cn,Δ = t div(f) with t ∈ Q≥0 and f =

∑
i cix

i ∈ C[x1, . . . , xn]

where the ci ∈ C \ {0} are algebraically independent over Q.
(3) (Theorem 4.12) dimX = 3, X has only isolated non-log-terminal points

and Δ = 0.

We will explain how to show (3) briefly. Mustaţă-Srinivas introduced in [93] the
following conjecture, the so-called weak ordinarity conjecture.

Conjecture 4.9 (Weak ordinarity conjecture [93]). Let V be an n-dimensional
smooth projective variety over an algebraically closed field of characteristic zero.
Given a model VA of V over a finitely generated Z-subalgebra A of k, there exists
a dense subset of closed points S ⊂ SpecA such that the natural Frobenius action
on Hn(Vμ,OVμ

) is bijective for all μ ∈ S.

Using techniques from [93], we can show the following.

Proposition 4.10 ([7], [119]). If Conjecture 4.9 holds, then Conjectures 3.26 and
4.8 hold as well.15 Conversely, if Conjecture 3.26 holds, then so does Conjecture
4.9.

However, since Conjecture 4.9 is open even when dimV = 1, it is virtually
impossible to make progress on Conjecture 4.8 by making use of Conjecture 4.9.
Therefore, we propose Conjectures An and Bn, a weaker form of Conjectures 4.8
and 4.9, respectively.

15More generally, it follows from a combination of Proposition 4.10 and [88] that if Conjecture
4.9 holds, then being of dense F -pure type is equivalent to being slc pairs.
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Conjecture An. Let x ∈ X be an n-dimensional normal Q-Gorenstein singularity
defined over an algebraically closed field of characteristic zero, such that x is an
isolated non-log-terminal point of X. Then x ∈ X is log canonical if and only if it
is of dense F -pure type.

Conjecture Bn. Let V be an n-dimensional projective variety over an algebraically
closed field k of characteristic zero with only rational singularities, such that KV

is linearly trivial. Given a model VA of V over a finitely generated Z-subalgebra A
of k, there exists a dense subset of closed points S ⊂ SpecA such that the natural
Frobenius action on Hn(Vμ,OVμ

) is bijective for all μ ∈ S.

We can easily check that Conjecture 4.9 implies Conjecture Bn as follows: Take

a resolution of singularities π : Ṽ → V . Since V has only rational singularities,

π induces an isomorphism Hn(V,OV ) ∼= Hn(Ṽ ,O
˜V ). Suppose we are given a

model πA : ṼA → VA of π over a finitely generated Z-subalgebra A of k. Applying

Conjecture 4.9 to Ṽ , we see that there exists a dense subset S of closed points of

SpecA such that the Frobenius action onHn(Ṽμ,O˜Vμ
) is bijective for all μ ∈ S. The

isomorphism Hn(Ṽμ,O˜Vμ
) ∼= Hn(Vμ,OVμ

) commutes with the Frobenius action,

and so we obtain the assertion.
The following lemma is a consequence of deep arithmetic results [96], [67], [8].

Lemma 4.11 ([96], [67], [8]). Conjecture Bn holds true if n ≤ 2.

Making use of recent progress on the minimal model program (see for example
[4]), we can prove the following statement.

Theorem 4.12 ([22]). Conjecture An+1 is equivalent to Conjecture Bn. In partic-
ular, Conjecture A3 holds true by Lemma 4.11.

4.2. F -pure centers and F -adjunction. Next, we will explain the theory of F -
adjunction, a positive characteristic analogue of Kawamata’s subadjunction [68],
introduced by Karl Schwede [104], [105].

In this subsection, let X be a normal integral scheme essentially of finite type
over a perfect field of characteristic p > 0 and Δ be an effective Q-divisor on X. We
assume in addition that KX +Δ is Q-Cartier with index16 not divisible by p. Then
there exist infinitely many e ∈ N such that (pe − 1)(KX +Δ) is a Cartier divisor.
We fix such an e0 ∈ N and put LΔ = OX((1 − pe0)(KX + Δ)). The composite
OX → F e0

∗ OX((pe0 − 1)Δ) of the e0-times iterated Frobenius OX → F e0
∗ OX and a

natural inclusion F e0
∗ OX → F e0

∗ OX((pe0 − 1)Δ) induces an OX -linear map

φΔ : F e0
∗ LΔ

∼= HomOX
(F e0

∗ OX((pe0 − 1)Δ),OX) → HomOX
(OX ,OX) = OX ,

where the first isomorphism follows from Grothendieck-Serre duality. In this article,
we refer to φΔ : F e0

∗ LΔ → OX as the map corresponding to Δ.
First, we introduce the notion of F -pure centers, a positive characteristic ana-

logue of log canonical centers.

Definition 4.13 ([104]). Let W be an irreducible closed subscheme of X and
IW ⊂ OX denote the defining ideal sheaf of W . When X is affine, we say that
W is a non-F -regular center of (X,Δ) if for all c ∈ IW and all ε > 0, the pair

16The index of KX + Δ is the smallest positive integer r such that r(KX + Δ) is a Cartier
divisor.
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(X,Δ+ε div(c)) is not sharply F -pure at the generic point ξW ofW . This definition
can be easily extended to non-affine schemes by considering the same condition on
each affine chart. We say that W is an F -pure center of (X,Δ) if W is a non-F -
regular center of (X,Δ) that is sharply F -pure at ξW . A minimal element (with
respect to inclusion) of the set of F -pure centers is called a minimal F -pure center.

The F -pure centers of (X,Δ) can be characterized in terms of φΔ.

Lemma 4.14 ([104]). Let W be an irreducible closed subscheme of X and IW ⊂
OX denote the defining ideal sheaf of W . Then W is a non-F -regular center of
(X,Δ) if and only if φΔ(F

e0
∗ (IWLΔ)) ⊆ IW . This definition is independent of

the choice of e0. If X = SpecR where R is an F -finite normal local ring, then
the above condition is equivalent to saying that (φ ◦ F e0

∗ i)(F e0
∗ IW ) ⊆ IW for all

φ ∈ HomOX
(F e0

∗ OX((pe0 − 1)Δ),OX), where i : OX → OX((pe0 − 1)Δ) is a
natural inclusion.

The following theorem should be compared with the fact that there are only
finitely many log canonical centers.

Theorem 4.15 ([105]). If (X,Δ) is sharply F -pure, then there are at most finitely
many F -pure centers of (X,Δ).

In order to state our F -adjunction formula, we need to introduce some notation.
Let W be an F -pure center of (X,Δ) and we assume that W is normal for now.
Since W is an F -pure center of (X,Δ), the map φΔ : F e

∗LΔ → OX induces an
OW -linear map φΔW

: F e0
∗ LΔW

→ OW where LΔW
= LΔ/IWLΔ:

F e0
∗ LΔ

�� ��

φΔ

��

F e0
∗ (LΔ/IWLΔ)

��

F e0
∗ LΔW

φΔW

��
OX

�� �� OX/IW OW .

Note that LΔW
is an invertible sheaf on W and LΔW

= OW ((1−pe0)(KX +Δ)|W ).
Since φΔW

is a global section of

HomOW
(F e0

∗ LΔW
,OW ) ∼= F e0

∗ OW ((pe0 − 1)(KX +Δ)|W − (pe0 − 1)KW ),

where the isomorphism follows from Grothendieck-Serre duality, we have a corre-
sponding effective divisor ΓW on W such that

ΓW ∼ (pe0 − 1)(KX +Δ)|W − (pe0 − 1)KW .

Then ΔW := (1/(pe0 − 1))ΓW is an effective Q-divisor on W satisfying that

KW +ΔW ∼Q (KX +Δ)|W .

Theorem 4.16 ([105]). In the above notation, the following holds:

(1) (W,ΔW ) is sharply F -pure if and only if so is (X,Δ).
(2) (W,ΔW ) is strongly F -regular if and only if W is a minimal F -pure center

of (X,Δ).
(3) There is a natural bijection between the F -pure centers of (W,ΔW ) and the

F -pure centers of (X,Δ) properly contained in W (as topological spaces).

Example 4.17. Let X = A3
k = Spec k[x, y, z] and Δ = div(x2z − y2), where

k is a perfect field of characteristic p ≥ 3. Since (x2z − y2)p−1 /∈ (xp, yp, zp),
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by Proposition 4.4 (2), the pair (X,Δ) is sharply F -pure. We will show that
W = V ((x, y)) is a minimal F -pure center of (X,Δ).

We may assume that e0 = 1. Then LΔ
∼= OX and the map φΔ : F∗OX → OX

corresponding to Δ is nothing but the composite map

F∗OX
×F∗(x

2z−y2)p−1

−−−−−−−−−−−→ F∗OX
TrF−−→ OX ,

where TrF : F∗OX → OX is the OX -linear map sending F∗(xyz)
p−1 to 1 and all

other lower-degree monomials to zero. Since

φΔ(F∗(x, y)) = TrF (F∗((x, y)(x
2z − yz)p−1)) ⊂ TrF (F∗(x

p, yp)) ⊂ (x, y),

W = V ((x, y)) is an F -pure center of (X,Δ) by Lemma 4.14. The map φΔ induces
an OW -linear map φΔW

: F∗OW → OW sending F∗z
(p−1)/2 to 1, from which it

follows that ΔW = (1/2)div(z). The pair (W,ΔW ) = (Spec k[z], (1/2)div(z)) is
strongly F -regular by Lemma 4.4 (3), and so we conclude from Theorem 4.16 that
W is a minimal F -pure center of (X,Δ).

When W is not normal, we take the normalization WN of W . Since φΔW
extends

to a unique OWN -linear map φΔWN
: F e

∗OWN → OWN , we can define an effective Q-

divisor ΔWN on WN satisfying that KWN +ΔWN ∼Q (KX +Δ)|WN similarly. The
pair (X,Δ) is, however, not necessarily sharply F -pure if (WN,ΔWN) is sharply
F -pure.

Example 4.18 ([105]). Let k be a perfect field of characteristic 2. Put X = A3
k =

Spec k[x, y, z] and Δ = div(x2z + y2). Then W = Δ is an F -pure center of (X,Δ).
Since OW = k[x, y, z]/(x2z + y2) ∼= k[u, uv, v2] ↪→ k[u, v], the normalization WN of
W can be identified with Spec k[u, v]. We may assume that e0 = 1, and then the
map φΔ : F∗OX → OX corresponding to Δ is the composite map

F∗OX
×F∗(x

2z+y2)−−−−−−−−−→ F∗OX
TrF−−→ OX F∗(xy) �→ F∗(x

3yz + xy3) �→ x,

where TrF : F∗OX → OX is the map sending F∗(xyz) to 1 and all other lower-
degree monomials to zero. It induces an OWN -linear map φΔWN

: F e
∗OWN → OWN

sending F∗v to 1, which implies that ΔWN = div(u). It is easily checked from
Proposition 4.4 (2) that (WN,ΔN) = (Spec k[u, v], div(u)) is sharply F -pure but
(X,Δ) = (Spec k[x, y, z], div(x2z + y2)) is not.

Such a pathology can be avoided by assuming that W has hereditary surjective
trace. Let R be an F -finite reduced local ring, RN be the normalization of R and
c be its conductor ideal. Note that c is an ideal of both rings R and RN. We say
that R has hereditary surjective trace if there exist minimal associated prime ideals
of c, p ⊂ R and q ⊂ RN, satisfying the following three conditions: (i) R ∩ q = p,
(ii) the induced trace map Tr : (RN/q)N → (R/p)N is surjective, and (iii) R/p
also has hereditary surjective trace. Since dimR/p < dimR, this definition is well
defined. We say that an F -finite reduced scheme X has hereditary surjective trace
if the local ring OX,x has hereditary surjective trace for every x ∈ X. Although the
definition looks complicated at first glance, it is known by [88] that any reduced
scheme of finite type over an algebraically closed field of characteristic zero has
hereditary surjective trace after reduction to characteristic p � 0.

Theorem 4.19 ([88]). Let the notation be as above and W be a (not necessar-
ily normal) F -pure center of (X,Δ). If W has hereditary surjective trace, then
(WN,ΔWN) is sharply F -pure if and only if so is (X,Δ).
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5. Test ideals

It is usually difficult to compute the tight closure of a given ideal directly from the
definition. Therefore, the notion of test elements, elements for testing membership
in tight closure, was introduced. The classical test ideal τ (R) is defined to be the
ideal generated by all test elements (see Remark 5.5), which means that test ideals
originally come from the theory of tight closure. However, once it turned out that
they were a positive characteristic analogue of multiplier ideals, test ideals quickly
began finding applications in their own right. In this section, after explaining the
definition and basic results of test ideals, we will mention two of their applications.
One is to commutative algebra and the other is to algebraic geometry.

Strictly speaking, there are two kinds of test ideals, finitistic test ideals and big
test ideals.17 Finitistic test ideals have been considered as more natural from the
point of view of tight closure theory, and they are often referred to simply as “test
ideals” in the literature. However, since big test ideals are easier to treat and have
more applications, we focus on big test ideals in this article. Although the big test
ideal of an ideal a is often denoted by τ̃ (a) or τb(a) in the literature, we denote it
simply by τ (a) and refer to it simply as the “test ideal” of a.

5.1. Definition and basic properties. While we have considered a pair consist-
ing of a normal variety and a Q-divisor on it in the previous section, we consider a
pair consisting of a reduced ring and its ideal in this section. Let R be an F -finite
reduced ring, a ⊂ R be an ideal satisfying that a ∩ R◦ �= ∅ and t > 0 be a real
number.

Schwede [104] gave a characterization of test ideals. We take this as the definition
of test ideals.

Definition 5.1 ([104]). The test ideal τ (at) of a with exponent t is defined to be
the unique smallest ideal J of R that satisfies the following two conditions:

(i) φ(e)(F e
∗ (Ja

�t(pe−1)�)) ⊆ J for all e ∈ N and all φ(e) ∈ HomR(F
e
∗R,R),

(ii) J ∩R◦ �= ∅.
When a = R, we denote this ideal by τ (R).

The existence of the test ideal τ (at) is not clear from definition, and we use the
notion of test element to describe τ (at) more explicitly.

Definition 5.2 ([53]; cf. [54]). We say that c ∈ R◦ is a test element for R if for every
d ∈ R◦, there exist some e ∈ N and φ(e) ∈ HomR(F

e
∗R,R) such that c = φ(e)(F e

∗ d).

The following lemma is useful for finding a test element.

Lemma 5.3 ([53], [117]; cf. [54]). (1) Let c ∈ R◦ be an element such that the
localization Rc with respect to c is strongly F -regular. Then some power cn

of c is a test element for R.
(2) Suppose that R is essentially of finite type over an F -finite field k, and

denote by J(R/k) the Jacobian ideal of R over k. Then every element of
J(R/k) ∩R◦ is a test element for R.

Now we give an explicit description of test ideals using test elements.

17It is conjectured that they coincide with each other. This conjecture is known to be true if
the ring is normal and Q-Gorenstein (see [45]).
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Lemma 5.4 ([42]). Let c ∈ R◦ be a test element for R. Then

τ (at) =
∑
e≥0

∑
φ(e)

φ(e)(F e
∗ (ca

�tpe�)),

where φ(e) runs through all elements of HomR(F
e
∗R,R).

Remark 5.5 ([54]). The test ideal τ (R) coincides with the ideal generated by all
the test elements for R. The name of “test ideal” comes from this fact. τ (R) can
be also defined in terms of tight closure. For simplicity, we assume that (R,m) is
an F -finite reduced local ring, and let E = ER(R/m) be the injective hull of the
residue field R/m of R. If we denote by 0∗E the tight closure of the zero submodule
in E (see Section 2 for its definition), then τ (R) = AnnR 0∗E .

We list some properties of test ideals that follow immediately from Definition
5.1 and Lemma 5.4.

Proposition 5.6. Let b be an ideal of R such that b ∩R◦ �= ∅ and s > 0 be a real
number.

(1) τ (R)a ⊆ τ (a).
(2) If a ⊆ b, then τ (at) ⊆ τ (bt). If we assume in addition that b is contained

in the integral closure a of a, then τ (at) = τ (bt).
(3) If s < t, then τ (as) ⊇ τ (at). Also, τ ((am)t) = τ (amt) for every m ∈ N.
(4) There exists some ε > 0, depending on t, such that τ (as) = τ (at) for all

s ∈ [t, t+ ε].
(5) τ (R) = R if and only if R is strongly F -regular.
(6) If W ⊂ R is a multiplicative set, then τ (at)RW = τ ((aRW )t).

(7) If (R,m) is a local ring, then τ ((aR̂)t) = τ (at)R̂, where R̂ is the m-adic
completion of R.

Example 5.7. (1) Suppose that R is a domain essentially of finite type over an
F -finite field k, and denote by J(R/k) the Jacobian ideal of R over k. It then
follows from Lemma 5.3 and Remark 5.5 that J(R/k) ⊆ τ (R).

(2) Let (R,m) be an F -finite F -pure local ring of characteristic p > 0. Suppose
that the local ring Rp is strongly F -regular for all prime ideals p �= m, but R
is not. Then τ (R) = m. Indeed, by the F -purity of R, there is an R-module
homomorphism ϕ : F∗R → R sending F∗1 to 1. For every x ∈ m, some power xn

of x is a test element for R by Lemma 5.3 (1). Take a sufficiently large e ∈ N such
that pe ≥ n, and consider the following R-linear map:

φ : F e
∗R

×F e
∗x

pe−n

−−−−−−−→ F e
∗R

ϕe

−→ R F e
∗x

n �→ F e
∗x

pe �→ x.

It then follows from Lemma 5.4 that x = φ(F e
∗x

n) ∈ τ (R). Thus, m ⊂ τ (R). Since
R is not strongly F -regular, we conclude from Proposition 5.6 (5) that τ (R) = m.

Suppose that (R,m) = k[[X,Y, Z]]/(X3 − Y Z(Y +Z)) where k is a perfect field
of characteristic p > 0. If p ≡ 1 mod 3, then R is F -pure by Example 3.8 and then
τ (R) = m by the above argument.18

(3) ([45]) Let R = k[x1, . . . , xd] be a polynomial ring over an F -finite field k of
characteristic p > 0 and a be a monomial ideal of R. Then

τ (at) = 〈xv | v + (1, . . . , 1) ∈ Int(P (a))〉,

18In fact, even when p ≡ 2 mod 3, one has τ(R) = m.
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where P (a) ⊂ Rd is the Newton polyhedron of a.19

(4) ([94]) Let R = k[x1, . . . , xd] be a polynomial ring over a perfect field k of
characteristic p > 0, and fix a polynomial f ∈ R. If there exist some e0 ∈ N and
gi1,...,id ∈ R with 0 ≤ i1, . . . , id < pe0 such that

f =
∑

0≤i1,...,id<pe0

gp
e0

i1,...,id
xi1
1 · · ·xid

d ,

then τ ((f)1/p
e0
) =

∑
0≤i1,...,id<pe0 Rgi1,...,id .

Suppose that p = 2, R = k[x, y, z] and f = x2 + y5 + z5 ∈ R. Put Δ = div(f).
Since f = x2 · 1 + (y2)2 · y + (z2)2 · z, one has

τ (SpecR, (1/2)Δ) = τ ((f)1/2) = (x, y2, z2),

which is not a radical ideal. On the other hand, (SpecR, (1/2)Δ) is F -pure by
Proposition 4.4. We refer to Remark 4.2 for an explanation of this example.

We will state three important local properties of test ideals after we introduce
the notion of test ideals associated to several ideals. Let b be an ideal of R such that
b∩R◦ �= ∅ and s > 0 be a real number. The test ideal τ (asbt) is the unique smallest
ideal J that satisfies two conditions: (i) φ(e)(F e

∗ (Ja
�s(pe−1)�b�t(p

e−1)�)) ⊆ J for all
e ∈ N and all φ(e) ∈ HomR(F

e
∗R,R), and (ii) J ∩R◦ �= ∅.

Theorem 5.8 ([117]). Let k be a perfect field of characteristic p > 0 and R be
an integral domain essentially of finite type over k. If we denote by J(R/k) the
Jacobian ideal of R over k, then J(R/k)τ (as)τ (bt) ⊆ τ (asbt) for all non-zero ideals
a, b ⊂ R and all real numbers s, t > 0.

Theorem 5.9 ([42]). If a is generated by at most l elements, then τ (al) = τ (al−1)a.

Theorem 5.9 gives an alternative proof of the theorem of Briançon-Skoda (The-
orem 2.13) when the ring is strongly F -regular. Let R be an F -finite strongly
F -regular local ring and I ⊆ R be an ideal generated by n elements. It then follows
from Proposition 5.6 (1), (2), (5) and Theorem 5.9 that for every w ∈ N,

In+w−1 = τ (R)In+w−1 ⊆ τ (In+w−1) = τ (In+w−1) = τ (In−1)Iw ⊆ Iw.

Next, we introduce the notion of F -jumping numbers. A real number t > 0 is
said to be an F -jumping number of a if τ (at) � τ (at−ε) for all ε ∈ (0, t). Note that
the family of test ideals τ (at) of a fixed ideal a is right continuous in t.

Theorem 5.10 ([109]). Suppose that R is an F -finite normal Q-Gorenstein do-
main. Then the set of F -jumping numbers of a is a discrete set of rational numbers.

Theorems 5.8, 5.9 and 5.10 are evidence that test ideals have many similar prop-
erties to those of multiplier ideals. However, test ideals behave totally differently
from multiplier ideals in some ways. For example, test ideals are not necessarily
integrally closed as we have seen in Example 5.7 (4), while multiplier ideals are
always integrally closed.

Lemma 3.24 enables us to show a correspondence between test ideals and multi-
plier ideals. Before stating the theorem, we recall the definition of multiplier ideals.
Let X be a normal Q-Gorenstein integral scheme essentially of finite type over a
field of characteristic zero and a be a non-zero ideal sheaf on X. We take a log

19The Newton polyhedron P (a) of a is the convex hull of the set of exponent vectors of the
monomial generators of a in Rd.
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resolution π : X̃ → X = SpecR of (X, a), that is, a proper birational morphism

with X̃ non-singular such that aO
˜X = OX(−F ) is invertible and that Exc(π) and

Exc(π)∪Supp(F ) are simple normal crossing divisors. For every real number t > 0,
the multiplier ideal J (at) of a with exponent t is defined to be

J (at) = J (X, at) = π∗O ˜X(�K
˜X − π∗KX − tF �) ⊂ OX .

This definition is independent of the choice of the log resolution π.

Theorem 5.11. ([45], cf. [39], [113]). Let R be a normal Q-Gorenstein domain
essentially of finite type over a field k of characteristic zero, a be a non-zero ideal
of R and t > 0 be a real number. Given a model (RA, aA) of (R, a) over a finitely
generated Z-subalgebra A of k, there exists a dense open subset S ⊂ SpecA such
that τ (atμ) = J (at)μ for all closed points μ ∈ S.

The set S in Theorem 5.11 depends on t in general.

Example 5.12. Let R = C[x, y] be the two-dimensional polynomial ring over C

and a = (x2+y3) ⊂ R be the principal ideal generated by x2+y3. Then RZ = Z[x, y]
and aZ = (x2 + y3) ⊂ RZ is a model of R and a over Z, respectively. Suppose that
t > 0 is a real number and p is a prime number. It is not hard to check that

J (at)p = τ (atp) = Rp if and only if

⎧⎪⎪⎨⎪⎪⎩
1/2 > t, (p = 2),
2/3 > t, (p = 3),
5/6 > t, (p ≡ 1 mod 3),
5/6− 1/(6p) > t, (p ≡ 2 mod 3).

Hence, if t < 5/6, then

St =

{
p ∈ SpecZ

∣∣∣∣ p ≥ 5 and
5

6
− 1

6p
> t

}
∪ {0}

is a dense open subset of SpecZ, depending on t, such that J (at)p = τ (atp) for all
prime numbers p ∈ St. On the other hand, it is known that

S = {p ∈ SpecZ | p ≡ 1 mod 3}

is not a dense open subset of SpecZ but a dense subset of closed points of SpecZ
such that J (aλ)p = τ (aλp) for all p ∈ S and all real numbers λ > 0.

As Example 5.12 suggests, it is expected that one can make S in Theorem 5.11
independent of t by replacing the condition “a dense open subset” with “a dense
subset of closed points”.

Conjecture 5.13 ([93]). Let X be an n-dimensional non-singular variety over an
algebraically closed field k of characteristic zero and a be a non-zero ideal on X.
Given a model XA of X over a finitely generated Z-subalgebra A of k, there exists
a dense subset of closed points S ⊂ SpecA such that τ (aλμ) = J (aλ)μ for all μ ∈ S
and all λ > 0.

Theorem 5.14 ([93], [91]). Conjecture 5.13 is equivalent to Conjecture 4.9.
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Summing up, we have seen that the following implications hold for the conjec-
tures discussed in this article:

Conjecture 3.26 

 �� Conjecture 4.9 

 ��

��
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���

���
���

���
���

���
���

�
Conjecture 5.13

Conjecture 4.8

��
Conjecture An+1



 �� Conjecture Bn

5.2. Asymptotic test ideals and their applications. In this subsection, we
will explain the theory of asymptotic test ideals and their applications.

5.2.1. Application to symbolic powers. Suppose that R is an F -finite integral do-
main. We say that a• = {am}m∈N is a graded family of ideals in R if the am are
ideals of R such that am · an ⊆ am+n for all m,n ∈ N. Let a• = {am}m∈N be a
graded family of ideals in R and t > 0 be a real number. It follows from Proposition
5.6 (3) that

τ (at/mm ) = τ ((anm)t/(mn)) ⊆ τ (at/(mn)
mn )

for all m,n ∈ N. Since R is Noetherian (all rings are Noetherian throughout this

article), by the above inclusion, we see that the family of test ideals {τ (at/mm )}m∈N

has a unique maximal element with respect to inclusion. This maximal element is
called the asymptotic test ideal of (R, at•) and denoted by τ (at•).

We can define an analogous notion for several graded families of ideals. Let
a• = {am}m∈N, b• = {bm}m∈N be graded families of ideals in R and s, t > 0 be real
numbers. The asymptotic test ideal τ (as•b

t
•) is the unique maximal element among

the family of ideals {τ (as/mm b
t/m
m )}m∈N.

We list some properties of asymptotic test ideals that easily follow from Propo-
sition 5.6 and Theorem 5.8.

Proposition 5.15. (1) τ (at•)am ⊆ τ (am+t
• ) for every m ∈ N.

(2) If s < t, then τ (as•) ⊇ τ (at•).
(3) There exists some ε > 0, depending on t, such that τ (as•) = τ (at•) for all

s ∈ [t, t+ ε].
(4) Suppose that R is essentially of finite type over a perfect field k, and denote

by J(R/k) the Jacobian ideal of R over k. Then for all m ∈ N, one has

J(R/k)m−1τ (amt
• ) ⊆ τ (at•)

m.

As one of the applications of asymptotic test ideals, we obtain a uniform bound
for the growth of symbolic powers of ideals. First we recall the definition of symbolic
powers of ideals. Let a be an ideal of R, and put W = R \

⋃
P∈Ass(R/a) P where P

runs though the associated primes of a. Then for each n ∈ N, the n-th symbolic
power a(n) of a is the contraction anRW ∩R, where RW denotes the localization of
R with respect to the multiplicative set W . In particular, if P is a prime ideal of R,
then P (n) = PnRP∩R. Note that the collection of symbolic powers a• = {a(m)}m∈N

is a graded family of ideals in R.
Since it is obvious from definition that an ⊆ a(n), it is natural to ask how large

the a(n) are when compared with the an. The following theorem gives an answer
to this question.
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Theorem 5.16 ([117]; cf. [16], [57], [40]). Let R be an integral domain essentially of
finite type over a perfect field k of characteristic p > 0 (respectively, of characteristic
zero), and denote by J(R/k) the Jacobian ideal of R over k. Let a be a non-zero
ideal of R and h denote the largest analytic spread 20of aRP as P runs through
the associated primes of a. Then for every integer m ≥ 0 and every n ∈ N, we
have J(R/k)na(hn+mn) ⊆ (a(m+1))n. In particular, J(R/k)na(hn) ⊆ an. When R
is strongly F -regular (respectively, SpecR has only log-terminal singularities), we
can decrease the exponent on the Jacobian ideal J(R/k) by one, in other words,
J(R/k)n−1a(hn+mn) ⊆ (a(m+1))n.

We give a sketch of the proof in the case of positive characteristic, to which
the characteristic zero case can be reduced using the techniques from Section 3.3.
Assume that a is a prime ideal P of R and m = 0 for simplicity. We assume in
addition that the residue field of the local ring RP is infinite. Then h is nothing but
the analytic spread of the maximal ideal PRP and it is known by the general theory
of integral closure that there exists a proper ideal J of RP generated by h elements
such that J = PRP . Let P• = {P (m)}m∈N be the graded family of symbolic
powers of P . By the definition of asymptotic test ideals, τ (P h

• ) = τ ((P (l))h/l) for
sufficiently divisible l ∈ N. It follows from Proposition 5.6 (2), (3) and (6) that

τ ((P (l))h/l)RP = τ ((P (l)RP )
h/l) = τ ((P lRP )

h/l) = τ ((PRP )
h) = τ (Jh).

Applying Theorem 5.9 to this, one has τ (P h
• )RP = τ (Jh) = τ (Jh−1)J ⊂ PRP ,

which implies that τ (P h
• ) ⊂ P . The proof of Theorem 5.16 now follows from a

combination of Example 5.7 (1) and Proposition 5.15 (1), (4):

J(R/k)nP (hn) ⊆ J(R/k)n−1τ (R)P (hn) ⊆ J(R/k)n−1τ (P hn
• ) ⊆ τ (P h

• )
n ⊆ Pn.

5.2.2. Application to asymptotic base loci. As another application of asymptotic
test ideals, we will explain a description of asymptotic base loci in positive charac-
teristic due to Mircea Mustaţă [92].

Let X be an F -finite normal integral scheme and Δ be an effective Q-divisor on
X. Let a be a non-zero ideal sheaf on X and t > 0 be a real number. As a variant
of the test ideal τ (at) defined in Definition 5.1, we define the test ideal τ ((X,Δ), at)
associated to the triple (X,Δ, at) as follows: If X = SpecR is an affine scheme,
then τ ((X,Δ), at) is the unique smallest non-zero ideal J of OX such that

(φ(e) ◦ F e
∗ i)(F

e
∗ (Ja

�t(pe−1)�)) ⊆ J

for all e ∈ N and all φ(e) ∈ HomOX
(F e

∗OX(�(pe − 1)Δ�),OX), where i : OX →
OX(�(pe − 1)Δ�) is a natural inclusion. In the general case, τ ((X,Δ), at) is the
ideal sheaf on X obtained by gluing the constructions on affine charts. Note that
the test ideal τ ((X,Δ), at) coincides with the test ideal τ (at) in Definition 5.1 in
the case where X = SpecR is affine and Δ = 0. Thus, we denote the ideal sheaf
τ ((X,Δ), at) simply by τ (X, at) when Δ = 0.

We define the trace map TreF : F e
∗ωX → ωX of the e-times iterated Frobenius on

X as in Section 3.2. Namely, TreF is the ωX -dual of F e : OX → F e
∗OX . When X is

regular (non-singular), there is a simple characterization of test ideals in terms of
the trace maps.

20If (A,m) is a local ring and I ⊆ m is an ideal of A, then the analytic spread �(I) of I is defined
to be the Krull dimension of the ring A/m⊗A (

⊕
n≥0 I

n/In+1). In general, ht I ≤ �(I) ≤ dimA.
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Proposition 5.17 ([92]; cf. [5]). Suppose that X is a non-singular projective variety
over a perfect field of characteristic p > 0. For an ideal sheaf b on X and an e ∈ N,
the ideal sheaf b[1/p

e] on X is defined by TreF (F
e
∗ (b · ωX)) = b[1/p

e] · ωX . Then

τ (X, at) =
⋃
e∈N

(a�tp
e�)[1/p

e] = (a�tq�)[1/q]

for a sufficiently large power q of p.

Let X be a normal projective variety over a perfect field of characteristic p > 0
and Δ be an effective Q-divisor on X such that KX + Δ is Q-Cartier. Let D be
a Q-Cartier Q-divisor on X such that rD is Cartier and H0(X,OX(rD)) �= 0 for
some r ∈ N. We fix such an r ∈ N, and let bm ⊆ OX denote the base ideal of the
linear series |mrD|, that is, bm is the image of the natural map

H0(X,OX(mrD))⊗OX(−mrD) → OX

for every m ∈ N. Then b• = {bm}m∈N is a graded family of ideal sheaves on X.
For every real number λ > 0, the asymptotic test ideal τ ((X,Δ), bλ•) associated
to the triple ((X,Δ), bλ•) is defined in a similar way to the asymptotic test ideal
τ (at•) in Section 5.2.1: τ ((X,Δ), bλ•) is the unique maximal element of the family

of test ideals {τ ((X,Δ), b
λ/m
m )}m∈N. We put τ ((X,Δ), λ · ||D||) = τ ((X,Δ), b

λ/r
• ),

and denote τ ((X,Δ), λ · ||D||) simply by τ (λ · ||D||) when Δ = 0. The ideal sheaf
τ ((X,Δ), λ · ||D||) is independent of the choice of r.

Making use of the asymptotic test ideal τ ((X,Δ), λ · ||D||) instead of the as-
ymptotic multiplier ideal J ((X,Δ), λ · ||D||), we can show a positive characteristic
analogue of [79, Corollary 11.2.13].

Theorem 5.18 (cf. [106]). Suppose that OX(H) is a globally generated ample line
bundle on X. Let λ > 0 be a rational number and L be a Cartier divisor on X such
that L − (KX + Δ) − λD is nef and big. Then for every integer n ≥ d = dimX,
τ ((X,Δ), λ · ||D||)⊗OX(L+ nH) is globally generated.

We give a sketch of the proof. For simplicity, we assume that X is a non-singular
projective variety, Δ = 0, D is a Cartier divisor such that H0(X,OX(D)) �= 0 and
L−KX − λD is ample. Let bm be the base ideal of the linear series |mD|. It then
follows from the definition of the test ideal τ (λ · ||D||) and Proposition 5.17 that

τ (λ · ||D||) = τ (X, bλ/mm ) = (b�λq/m�
m )[1/q]

for sufficiently divisible m and sufficiently large q = pe. By the definition of

(b
�λq/m�
m )[1/q], the trace map TreF induces a surjective map

F e
∗ (b

�λq/m�
m ⊗ ωX) → τ (λ · ||D||)⊗ ωX .

Tensoring this with OX(L−KX + nH), one has a surjection

F e
∗

(
b�λq/m�
m ⊗OX(qL− (q − 1)KX + qnH)

)
→ τ (λ · ||D||)⊗OX(L+ nH).

On the other hand, the natural map H0(X,OX(mD)) ⊗ OX(−mD) → bm is
surjective by the definition of bm. Therefore, its �λq/m�-th symmetric product

Sym�λq/m�H0(X,OX(mD))⊗OX(−m�λq/m�D) → b�λq/m�
m

is also a surjection. Put W := Sym�λq/m�H0(X,OX(mD)). The above two surjec-
tions induce a surjection

W ⊗ F e
∗OX(qL− (q − 1)KX −m�λq/m�D + qnH) → τ (λ · ||D||)⊗OX(L+ nH).
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Thus, it suffices to show that F e
∗OX(qL−(q−1)KX−m�λq/m�D+qnH) is globally

generated. Indeed, it follows from Lemma 5.19, because

Hi(X,OX(qL− (q − 1)KX −m�λq/m�D + q(n− i)H)) = 0

for all i > 0 by Fujita’s vanishing theorem (Lemma 5.20).

Lemma 5.19 ([78, Theorem 1.8.5]). Let X be a projective variety and F be a
coherent sheaf on X. Suppose that OX(H) is a globally generated ample line bundle
on X. If Hi(X,F ⊗OX(−iH)) = 0 for all i > 0, then F is globally generated.

Lemma 5.20 ([23]; cf. [78, Theorem 1.4.35]). Let X be a projective scheme over
a field k and H be an ample Cartier divisor on X. Given any coherent sheaf F on
X, there exists an integer m(F,H) such that Hi(X,F ⊗OX(mH +D)) = 0 for all
i > 0, m ≥ m(F,H), and any nef Cartier divisor D on X.

Remark 5.21 ([41]). Using a very similar argument to the proof of Theorem 5.18,
we can show a special case of Fujita’s conjecture in positive characteristic: Let X
be a d-dimensional projective variety over a perfect field of characteristic p > 0
such that every local ring OX,x of X is F -injective. If L is a globally generated
ample line bundle on X, then ωX ⊗ L⊗d+1 is also globally generated.

We conclude this section by mentioning an application of Theorem 5.18. In order
to state the result, we need to introduce some notation.

Let X be a non-singular projective variety over an algebraically closed field of
characteristic p > 0 and D be a Q-divisor on X. Fix an r ∈ N such that rD is an
integral divisor. The stable base locus B(D) of D is

⋂
n∈N Bs(nrD), where Bs(nrD)

denotes the base locus of the linear series |nrD| (with reduced scheme structure).
Since B(D) = Bs(nrD) for sufficiently divisible n by Noetherian property, B(D) is
independent of the choice of r. The asymptotic base locus B−(D)21 is then defined
by B−(D) =

⋃
A B(D + A), where A runs through all ample Q-divisors on X. It

follows from the definition that B−(D) depends only on the numerical equivalence
class of D and that B−(D) = ∅ if and only if D is nef (see [17]).

Next, we introduce the notion of asymptotic orders of vanishing. Let x ∈ X be a
closed point and mx denote the maximal ideal of the local ring OX,x. Suppose that
H0(X,OX(rD)) �= 0 for the above r ∈ N. For each m ∈ N, we denote by bm ⊆ OX

the base ideal of the linear series |mrD| and by ordx(bm) the order of vanishing of
bm at x. In other words, ordx(bm) = max{ν ≥ 0 | bm,x ⊆ mν

x}. The asymptotic
order of vanishing ordx(||D||) is then defined by

ordx(||D||) = inf
m∈N

ordx(bm)

mr
= lim

m→∞

ordx(bm)

mr
,

where the last equality follows from the fact that {bm}m∈N is a graded family of
ideal sheaves on X. The definition of ordx(||D||) is independent of the choice of r.

Replacing the role of asymptotic multiplier ideals in [17] by asymptotic test ideals
and [79, Corollary 11.2.13] by Theorem 5.18, we obtain the following theorem.

Theorem 5.22 ([92]). Suppose that D is a big Q-divisor on X and x ∈ X is a
closed point. Then x /∈ B−(D) if and only if ordx(||D||) = 0.

21This locus is often referred to as the non-nef locus or the restricted base locus.
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6. Hilbert-Kunz multiplicity

The Hilbert-Samuel multiplicity is a fundamental invariant in commutative ring
theory and singularity theory. There is another kind of multiplicity in positive char-
acteristic, Hilbert-Kunz multiplicity, introduced by Paul Monsky [89].22 Hilbert-
Kunz multiplicity has properties both similar to and different from those of Hilbert-
Samuel multiplicity. For example, Hilbert-Samuel multiplicity determines member-
ship in integral closure, and Hilbert-Kunz multiplicity determines membership in
tight closure. Hilbert-Samuel multiplicity is a positive integer, but Hilbert-Kunz
multiplicity is not necessarily even a rational number (see [11]).

When the second-named author began the study of Hilbert-Kunz multiplicity,
Monsky had found some mysterious behavior of it (see [36] for example) and it had
been thought of as a difficult and elusive subject to study. Watanabe had a chance
to meet Monsky in 1997 and said, “I want to make Hilbert-Kunz multiplicity less
mysterious.” Monsky then answered, “I want to make Hilbert-Kunz multiplicity
more mysterious!” Indeed, the counterexample to the localization problem in tight
closure theory, mentioned in Remark 2.5, has come from Monsky’s study of Hilbert-
Kunz multiplicity.

In this section, we overview the theory of Hilbert-Kunz multiplicity. We rec-
ommend [60] Section 6 for a nice introduction to Hilbert-Kunz multiplicity. The
authors of this article got a lot of inspiration from this book.

Suppose that (A,m) is a local ring of characteristic p > 0 and I is an m-primary
ideal of A. The Hilbert-Kunz multiplicity of I is defined as follows. We also recall
the definition of Hilbert-Samuel multiplicity of I.

Definition 6.1 ([89]). Let I be an m-primary ideal of a d-dimensional local ring
(A,m) of characteristic p > 0.

(1) The Hilbert-Samuel multiplicity e(I) of I is defined by

e(I) := lim
n→∞

d!
�A(A/In)

nd
.

(2) The Hilbert-Kunz multiplicity eHK(I) of I is defined by

eHK(I) := lim
e→∞

�A(A/I [p
e])

ped
.

The limits e(I) and eHK(I) always exist. If I = m, we denote e(A) := e(m) (respec-
tively, eHK(A) := eHK(m)) and call it the Hilbert-Samuel multiplicity (respectively,
Hilbert-Kunz multiplicity) of A.

Remark 6.2. Brenner [11] has recently given an example of a local domain whose
Hilbert-Kunz multiplicity is irrational. Monsky conjectured in [90] that if A =

F2[[U, V,X, Y, Z]]/(UV +X3 + Y 3 +XY Z), then eHK(A) = 4/3 + 5/(14
√
7). This

conjecture is still open. On the other hand, if R =
⊕

n≥0 Rn is a two-dimensional
graded domain with R0 an algebraically closed field of characteristic p > 0, then
eHK(I) is a rational number for all homogeneous R+-primary ideals I (see [10],
[121]). If (A,m) is a local ring of finite F -representation type (see Section 7 for
rings of finite F -representation type), then eHK(I) is a rational number for all
m-primary ideals I (see [110], [126]).

22Hilbert-Kunz multiplicity has origin in the work of Kunz [76], [75], but he erroneously thought
that it did not exist in general. Monsky proved in [89] that it always exists and named it after
Kunz.
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e(I) and eHK(I) do not change after passing to completion by definition. Also,
removing the lower-dimensional irreducible components of SpecR does not affect
the values of e(I) and eHK(I): if a is the intersection of all prime ideals p of A with
dimA/p = d, then e(I) = e(I(A/a)) and eHK(I) = eHK(I(A/a)). Thus, we may
assume that A is complete and equidimensional.

Assumption. We assume from now on that (A,m) is a d-dimensional complete
equidimensional reduced local ring of characteristic p > 0, unless stated otherwise.

Given m-primary ideals I ⊆ I ′, it is obvious from the definition that e(I ′) ≤ e(I)
and eHK(I

′) ≤ eHK(I). Then it is natural to ask when the equalities hold. These
equality conditions are described in terms of integral closure and tight closure.

Proposition 6.3. For m-primary ideals I ⊂ I ′ of A, the following holds:

(1) ([99]) e(I ′) = e(I) if and only if I ′ ⊂ I.
(2) ([54]) eHK(I

′) = eHK(I) if and only if I ′ ⊂ I∗.

Next, we observe the relationship of e(I) and eHK(I).

Lemma 6.4. Let I be an m-primary ideal I of A.

(1) We have the following inequalities:

1

d!
e(I) ≤ eHK(I) ≤ e(I).

In particular, if d = 1, then e(I) = eHK(I). When d ≥ 2, the left inequality
is strict ([35]), but there are examples where (1/d!)e(I) is arbitrarily close
to eHK(I) (Example 6.5 (2)).

(2) ([81]) If I is a parameter ideal, then e(I) = eHK(I).
(3) If A is regular, then eHK(I) = �A(A/I) by the flatness of the Frobenius map

(Theorem 2.2). In particular, if A is regular, then eHK(A) = 1.

It follows from Proposition 6.3 and Lemma 6.4 that if A is F -rational but not
regular, then eHK(A) � e(A). For the proof of this, we may assume that the
residue field A/m is infinite. Then it is well known that there exists an m-primary
parameter ideal J ⊂ A such that J = m. Since J∗ = J � m by assumption, one
has eHK(A) � eHK(J) = e(J) = e(A).

Since e(I) = eHK(I) for one-dimensional local rings as we have seen in Lemma
6.4 (1), we mainly consider the case where d ≥ 2.

Example 6.5 ([127], [128]). Let k be the residue field of A and I be an m-primary
ideal of A.

(1) Let A ⊂ B be a finite extension of local domains with the same residue field.
Then eHK(I) = eHK(IB)/r, where r is the rank of B as an A-module. In particular,
if B is regular, then eHK(I) = �B(B/IB)/r.

(2) Let A be the r-th Veronese subring of B = k[[X1, . . . , Xd]], that is, the
subring of B generated by all monomials of degree r. Then by (1), we have

eHK(A) = �B(B/mB)/r =
(
d+r−1

d

)
/r. On the other hand, since e(A) = rd−1,

one has limr→∞ eHK(A)/e(A) = 1/d!. Thus, this is an example where (1/d!)e(I) is
arbitrarily close to eHK(I).

(3) If A = k[[X,Y, Z]]/(XY − Zn) where n ≥ 2 is an integer, then eHK(A) =
2 − 1/n. In general, when A is a two-dimensional F -rational Gorenstein complete
local ring with algebraically closed coefficient field k, there exists a linearly reductive
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finite subgroup G of SL(2, k) such that A is isomorphic to the completion of the
ring of invariants k[X,Y ]G (see [48]). Then eHK(A) = 2− 1/|G|.

(4) Assume that A is a two-dimensional unmixed local ring.23 Then for every
m-primary ideal I, we have eHK(I) ≥ (e(I) + 1)/2. If k is an algebraically closed
field, then the equality holds when I = m if and only if the associated graded ring
grm A =

⊕
n≥0 m

n/mn+1 is isomorphic to the e(A)-th Veronese subring of k[X,Y ].

In particular, if A is not regular, then eHK(A) ≥ 3/2 and the equality holds if and
only if A ∼= k[[X,Y, Z]]/(XY − Z2).

Remark 6.6. Fix an integer d ≥ 2. We see from Example 6.5 (3) that there is a
sequence of two-dimensional local rings {An} such that eHK(An) converges to 2
from below. Is there a a sequence of local rings {An} of dimension d such that
eHK(An) converges to some real number from above?

The following theorem of Nagata is very fundamental in commutative ring theory
and singularity theory.

Theorem 6.7 ([95, (40.6)]). If A is an unmixed local ring, then A is regular if and
only if e(A) = 1.

The analogous statement for Hilbert-Kunz multiplicity is also true.

Theorem 6.8 ([127], [65]). If A is an unmixed local ring of positive characteristic,
then A is regular if and only if eHK(A) = 1.

We give a sketch of the proof of Theorem 6.8. The key ingredient is the following
fact: if eHK(A) = 1, then eHK(J) − �A(I/J) ≤ eHK(I) ≤ �A(A/I∗) for any m-
primary ideals J ⊂ I. It follows from this fact and Theorem 6.9 that �A(A/q∗) =
eHK(q) = e(q) for every m-primary parameter ideal q ⊂ A, which implies that A is
F -rational. Put I = m[p] and take an m-primary parameter ideal J ⊂ I. By the
above fact and the Cohen-Macaulay property of A, we see that

�A(A/I) = �A(A/J)− �A(I/J) = eHK(J)− �A(I/J) ≤ eHK(I) ≤ �A(A/I∗)

≤ �A(A/I).

Namely, �A(A/I) = eHK(I) = pdeHK(A) = pd, and we conclude from Theorem 2.2
(3)⇒(1) that A is regular.

Theorem 6.9 was proved under some additional assumption in [127], and in the
general case in [29]. It should be compared with the basic fact that for an m-
primary parameter ideal J ⊂ A, one has �A(A/J) ≥ e(J) and the equality holds if
A is Cohen-Macaulay. Replacing J with J∗, we have the reverse inequality.

Theorem 6.9 ([29]; cf. [127]). If J is an m-primary parameter ideal of A, then
�A(A/J∗) ≤ e(J). Moreover, if A is unmixed and �A(A/J∗) = e(J) for some
m-primary parameter ideal J ⊂ A, then A is F -rational.

By Theorem 6.8, if an unmixed local ring A is not regular, then eHK(A) > 1. It
is natural to ask whether there is a sharp lower bound for Hilbert-Kunz multiplicity
of d-dimensional non-regular unmixed local rings.

23A d-dimensional local ring (R,m) is called unmixed if for every associated prime p of the

m-adic completion R̂, one has dim R̂/p = d.
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Conjecture 6.10 ([130]). Let k be a field of characteristic p ≥ 3 and d ≥ 2 be an
integer. If we put

Ap,d = k[[X0, X1, . . . , Xd]]/(X
2
0 +X2

1 + . . .+X2
d),

then the following holds for an arbitrary d-dimensional unmixed local ring (A,m)
of characteristic p with residue field k.

(1) If A is not regular, then eHK(A) ≥ eHK(Ap,d).
(2) If eHK(A) = eHK(Ap,d) and if k is an algebraically closed field, then the

m-adic completion Â of A is isomorphic to Ap,d.

In Conjecture 6.10, (2) is known for d ≤ 4 ([130]), and (1) is known for d ≤ 6
([1]) or when A is a complete intersection ([18]).

It is known that eHK(Ap,2) = 3/2 and eHK(Ap,3) = 4/3 for all p. If d ≥ 4, then
the value of eHK(Ap,d) depends on p. Indeed, eHK(Ap,4) = (29p2 + 15)/(24p2 + 12)
and limp→∞ eHK(Ap,4) = 29/24. One of the most mysterious properties of Ap,d is
that the limit limp→∞ eHK(Ap,d) can be described by using the Maclaurin expansion
of tanx+ secx.

Theorem 6.11 ([25]). Let the notation be the same as that in Conjecture 6.10.
Let

∑
d≥0(cd/d!)x

d be the Maclaurin expansion of tanx+ secx. Then

lim
p→∞

eHK(Ap,d) = 1 +
cd
d!
.

We conclude this section by mentioning the Hilbert-Kunz function. The Hilbert-
Kunz function of an m-primary ideal I of A is a function Z≥0 → R sending e to

�A(A/I [p
e]). When Monsky defined Hilbert-Kunz multiplicity in [89], he showed

that �A(A/I [q]) = eHK(I)q
d + O(qd−1) for q = pe. If A is normal, then we can

strengthen this result: Let (A,m) be a d-dimensional excellent normal local ring of
characteristic p > 0 with perfect residue field. Then Huneke-McDermott-Monsky
[63] proved that for every m-primary ideal I ⊂ A, there exists a real number β(I)
such that

�A(A/I [q]) = eHK(I)q
d + β(I)qd−1 +O(qd−2).24

In general β(I) �= 0, but if A is a complete Q-Gorenstein normal local ring, then
β(I) = 0 (see [77]).

A geometric description of Hilbert-Kunz function (or multiplicity) is desired
for further study. When R =

⊕
n≥0 Rn is a two-dimensional standard graded

normal domain with R0 an algebraically closed field of characteristic p > 0 and
I is a homogeneous R+-primary ideal, an explicit description of the Hilbert-Kunz
multiplicity was given in [10], [121] by using vector bundles on X = ProjR.

7. Closing remark

There are several important topics on F -singularities that we have not been able
to include because of space limitations.

Let (R,m) be a d-dimensional complete reduced local ring with prime charac-
teristic p and perfect residue field R/m. Then the F -signature s(R) of R is defined
by s(R) = lime→∞ ae/p

ed, where ae denotes the largest rank of a free R-module

24One might hope to generalize this result to show that there exists a real number γ(I) such

that �A(A/I[q]) = eHK(I)qd + β(I)qd−1 + γ(I)qd−2 + O(qd−3). However, this cannot be true
because of Han-Monsky’s example [36].
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appearing in a direct sum decomposition of F e
∗R. This invariant was first intro-

duced by Huneke-Leuschke [62] and its existence was proved by Kevin Tucker [122]
in full generality. The F -signature can be characterized in terms of the Hilbert-
Kunz multiplicity: s(R) coincides with the infimum of eHK(I)− eHK(I

′) as I � I ′

run through all m-primary ideals of R.25 Also, the F -signature s(R) measures the
singularities of R. It takes a value between 0 and 1, and s(R) = 1 (respectively,
s(R) > 0) if and only if R is regular (respectively, strongly F -regular) (see [2]).

The notion of rings with finite F -representation type was introduced by Smith-
Van den Bergh [115], inspired by the notion of rings with finite Cohen-Macaulay
type. They fit into the theory of D-modules in positive characteristic and satisfy
some finiteness properties ([131], [120]). For example, the F -signature of a ring
with finite F -representation type is a rational number. Affine toric rings and rings
of invariants under linearly reductive group actions are examples of rings with finite
F -representation type. The relationship with other F -singularities treated in this
article is not clear at the moment. There is an example of a ring that is strongly
F -regular but not with finite F -representation type ([111]).

Global F -regularity was introduced by Smith [114] and can be viewed as a global
version of strong F -regularity. It is a global property of a projective variety over a
field of positive characteristic. For example, the anti-canonical divisor of a global
F -regular variety is big ([107]). Projective toric varieties and Schubert varieties
are examples of globally F -regular varieties ([80], [46]). As a global version of the
correspondence between strong F -regularity and being klt, it is conjectured in [107]
that a normal projective variety X over a field of characteristic zero is log Fano if
and only if it is of “globally F -regular type”. This conjecture is known to be true
if dimX = 2 ([28], [66], [97]) or if X is a Mori dream space ([27]).
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