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RECENT TOPICS OF ARRANGEMENTS OF HYPERPLANES

HIROAKI TERAO AND MASAHIKO YOSHINAGA

1. Introduction

First of all, we define an arrangement of hyperplanes.

Definition 1.1 (Arrangement of hyperplanes). Let V be an �-dimensional
vector space over a field K. An affine subspace of dimension (�− 1) in V is called
a hyperplane. An arrangement of hyperplanes is a finite set of hyperplanes.

In this article, a field K is R or C in most of the cases.
For example, a set of finite points on a one-dimensional real line and a set of

finite points on a one-dimensional complex plane are the simplest examples of an ar-
rangement of hyperplanes. Therefore, “the planting-tree arithmetic” that n points
on a line divide the line into (n+ 1) intervals and (n− 1) of them are finite inter-
vals is a result belonging to the theory of arrangement of hyperplanes. (Actually,
as mentioned later, T. Zaslavsky generalized “the planting-tree arithmetic” to the
higher dimensional cases in 1975.) In this sense, the history of arrangement of
hyperplanes is as old as the recorded history itself. In this article, we will present
the modern study of arrangement of hyperplanes by dividing it into the following
three areas:

(A) Free arrangements and free multiarrangements (including Coxeter arrange-
ments),

(B) Topology of complex complements,
(C) Hypergeometric integrals associated with an arrangement.

We can safely say that almost all the recent research topics related to arrangements
of hyperplanes are in these three areas. We would like to convey to the readers the
interesting relationships among them. Tracing these three areas back to the 1970s,
we arrive at three Japanese mathematicians’ (Kazuhiko Aomoto, Akio Hattori,
Kyoji Saito) pioneering achievements.

The organization of this article is as follows: First, the situation of the research in
arrangement of hyperplanes in the 1970s and these three Japanese mathematicians’
works are described in Chapter 2. In Chapter 3, we describe (A) free arrangements
and free multiarrangements in detail. The Coxeter arrangements, which are rep-
resentative free arrangements of hyperplanes, are also dealt with in Chapter 3. In
Chapter 4, we argue (B) topology of complex complements. Especially, we explain
the “combinatorial determinativeness” and the “minimality”. The theory of Ao-
moto’s hypergeometric functions which belongs to (C) is closely related with the
local system cohomology and homology on complex complements. We describe
principal results derived from the theory in Chapter 5. We give the readers fair
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warning here: since it is impossible to describe the above three areas exhaustively
due to limitations of the space and our ability, the topic (A) will be the main theme
of this article. For the topics we do not cover in this article, especially the topics
prior to the 1990s, the readers are advised to see [51, 52] among others.

2. The 1970s

The modern study of arrangement of hyperplanes began with focusing on its
combinatorial properties first and abstracting them. To put it concretely, it was
the use of the Möbius function on the intersection poset. G.-C. Rota [56] was
the first person to define and study the Möbius function on a poset. In 1975,
T. Zaslavsky [92] generalized “the planting-tree arithmetic” by using the Möbius
function as the following Theorem 2.2.

Definition 2.1 (Intersection poset). Let A be an arrangement of hyperplanes
in an �-dimensional vector space V . Define the intersection poset by

L(A) :=

{ ⋂
H∈B

H | B ⊆ A,
⋂
H∈B

H �= ∅
}
,

where we agree that V =
⋂

H∈∅ H when B is the empty set. Define a partial order
on L(A) by

Y1 ≥ Y2 ⇐⇒ Y1 ⊆ Y2.

The Möbius function μ is defined as a function satisfying

μ : L(A) −→ Z, μ(V ) = 1, μ(X) = −
∑

Y ∈L(A)
Y <X

μ(Y ).

(Then μ(H) = −1 for H ∈ A.) Furthermore, we define the rank function

r : L(A) −→ Z≥0

by r(Y ) = codimV Y . (Then r(V ) = 0 and r(H) = 1 for H ∈ A.) Call r(A) =
maxX∈L(A) r(X) the rank of A. The Poincaré polynomial π(A, t) is defined by

π(A, t) :=
∑

X∈L(A)

μ(X) (−t)r(X) =
∑

X∈L(A)

|μ(X)| tr(X).

(It is known that the sign of μ(X) is equal to (−1)r(X).) Although it is essentially
the same as the Pouncaré polynomial, the following polynomial χ(A, t) is called the
characteristic polynomial of A:

χ(A, t) :=
∑

X∈L(A)

μ(X) tdimX .

All of the objects defined in Definition 2.1 above depend only on L(A). In this
sense, they are combinatorial objects. From now on, express the complement of
A as

M(A) := V \
⋃

H∈A
H.

When V = C�, π(A, t) is equal to the Poincaré polynomial ofM(A) (Orlik-Solomon
[50]). When V = R�, M(A) is disconnected (except the case that A is empty) and
decomposed into finite connected components. They are called the chambers.
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Express the set of chambers by C(A). There are two types of chambers, namely a
bounded (finite volume) chamber and an unbounded chamber. The set of bounded
chambers is denoted by bC(A).

Theorem 2.2 (T. Zaslavsky [92]). Let V = R�. Then the number of chambers
and bounded chambers are given by the following formulas:

|C(A)| = π(A, 1) =
∑

X∈L(A)

|μ(X)|, |bC(A)| = |π(A,−1)| =

∣∣∣∣∣∣
∑

X∈L(A)

μ(X)

∣∣∣∣∣∣ .
We can easily prove Theorem 2.2 by considering a triple (A,A′,A′′) defined as

follows. The idea of a triple is useful.

Definition 2.3 (Triple). Let A be a non-empty arrangement of hyperplanes in
V . Fix H0 ∈ A. Put

A′ := A \ {H0}, A′′ := {H0 ∩K | K ∈ A′, H0 ∩K �= ∅};
then A′ and A′′ are arrangements of hyperplanes in V and H0 respectively. We
call A′ the deletion of A (with respect to H0) and A′′ the restriction to H0. We
sometimes express A′′ as AH0 with specifying H0.

There are many formulas for a triple. For example

M(A′) = M(A) ∪M(A′′) (disjoint),

π(A, t) = π(A′, t) + tπ(A′′, t),

|C(A)| = |C(A′)|+ |C(A′′)| (when V = R�),

|bC(A)| = |bC(A′)|+ |bC(A′′)| (when V = R�),

etc. Here note that M(A′′) is the complement in H0. By these formulas, we can
verify Theorem 2.2 using an induction on |A|. In the case of dimension one, since
π(A, t) = 1 + |A|t, Theorem 2.2 is nothing but “the planting-tree arithmetic”.

Around 1975 when Theorem 2.2 was published, the “modern study” of arrange-
ments of hyperplanes was initiated in a broad context of fields such as algebraic
geometry, topology, and analysis (hypergeometric integrals). The time was ripe,
and the “modern study” of arrangement of hyperplanes began.

Kazuhiko Aomoto started the full-scale study of the multivariable hyperge-
ometric functions in his paper [12] in 1973. It was the first paper about what is
called Aomoto-Gelfand’s theory nowadays. “Un théorème du type de Matsushima-
Murakami” appearing in the title of this paper is a vanishing theorem for a coho-
mology with coefficients in a local system1 on a certain kind of symmetric space.
In this paper, Aomoto proved the vanishing theorem for a cohomology with coeffi-
cients in a local system on the complement M(A) of an arrangement of hyperplanes
A of rank � in an �-dimensional affine complex space. Namely, for a generic local
system L, any Hp(M(A),L) is equal to zero if p �= �. Then the dimension of
H�(M(A),L) is equal to the absolute value of the Euler characteristic of M(A),
that is, π(A,−1). (In the case that A is defined on the real number field, the num-
ber is equal to |bC(A)| by Theorem 2.2.) The reason why the vanishing theorem
is related to the hypergeometric functions or the hypergeometric integrals is that

1See [42], [26] for the general theory of local system.
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Aomoto’s hypergeometric integrals are defined by the twisted de Rham pairing of
the local system cohomology and the local system homology

Hp(M(A),L)×Hp(M(A),L∨) −→ C

(L∨ is the dual system of L). In the case of Gaussian hypergeometric functions
which are the prototypes of hypergeometric functions, the corresponding arrange-
ment of hyperplanes A is the three hyperplanes (points) 0, 1, x−1 (x �∈ {0, 1,∞})
in C. Since χ(M(A)) = −2, H0(M(A),L) = 0 and dimH1(M(A),L) = 2 when L
is generic. A basis for the cohomology H1(M(A),L) can be given as two rational
1-forms with poles at 0, 1, x−1 by the twisted de Rham correspondence, and a basis
for the homology H1(M(A),L∨) can be given as two twisted cycles. Studies of
arrangement of hyperplanes in the framework above (for example, the study of the
Aomoto complex or general conditions for the vanishing theorem to hold) has been
active since Aomoto. We will describe a part of the study in Chapter 5.

On the other hand, in the paper [41] in 1975, Akio Hattori studied in depth the
complement of an arrangement of hyperplanes in general position in C�, and explic-
itly constructed a homotopy equivalent complex by gluing tori. By the construction,
he verified the complex complement is not K(π, 1) and that the fundamental group
is abelian. Such an explicit construction was a harbinger of the Salvetti complex
by Salvetti [63]. As mentioned clearly in [41], this study was inspired by the study
of the complement of an arrangement of hyperplanes in general position which ap-
peared in the study of Aomoto’s hypergeometric integrals. The mutual exchanges
between analysis and topology like this are innumerable in the history of the study
of arrangement of hyperplanes.

Here, turning the clock back, we mention the following important topological
studies, from the 1960s and 1970s, of the complement of a complex reflection ar-
rangement such as the Coxeter arrangement. As for the complement of the complex
Coxeter arrangement of the type A, Fadell and others verified in [36] that it is fiber
type (as defined later), thereforeK(π, 1). Moreover, Arnold [15] showed its Poincaré
polynomial factors over the integers as (1 + t)(1 + 2t) . . . (1 + (�− 1)t). After that,
Brieskorn [20] generalized the result by Arnold to Coxeter arrangements of the types
other than the type A. These factorizations are the origin of the factorization the-
orem (Theorem 3.4). As for the K(π, 1) property of the complex complement of a
real arrangement of hyperplanes, Deligne’s result [27] is especially important.

Also in the 1970s, Kyoji Saito introduced two important modules for the di-
visors which are studied in algebraic geometry, that is, the module of logarithmic
differential 1-forms with poles along the divisor and the module of logarithmic vec-
tor fields tangent to the divisor. Although the comprehensive theory was published
in [59] in 1980, the study itself dates back to the 1970s (for example, [58]). In this
article, we give the definition restricted to the case of arrangements of hyperplanes
(in algebraic category).

Definition 2.4 (Logarithmic differential form and logarithmic vector field).
Let A be an arrangement of hyperplanes in V . Let S be an algebra of polynomial
functions over V . The defining polynomial of A is given by

Q :=
∏
H∈A

αH ∈ S
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(where αH = 0 is an equation defining H). Then we define the following three
S-modules:

Ωp(A) := {ω | ω is a rational differential p-form, Qω and Q(dω) are both regular},
(1 ≤ p ≤ �)

DerV := {δ | δ : S −→ S is a K-linear derivation},
D(A) := {δ ∈ DerV | δ(αH) ∈ αHS (∀H ∈ A)}.

An element of Ωp(A) is called a logarithmic differential p-form with poles
along A, and an element of D(A) is called a logarithmic derivation or a loga-
rithmic vector field.

Definition 2.5 (Free arrangement of hyperplanes). We say that an arrange-
ment of hyperplanes A is a free arrangement of hyperplanes, or simply a free
arrangement, when Ω1(A) is a free S-module. Moreover, when we replace Ω1(A)
by D(A), we still get an equivalent definition.

The Coxeter arrangements are the most important examples of free arrangements
of hyperplanes. We will discuss them in detail in Section 3.6. The free arrangements
are special kinds of free divisors. The theory of the free divisors is a by-product
of Kyoji Saito’s theory of the primitive forms. It was shown that the discriminant
of the base space of a general family of semi-universal deformations of an isolated
hypersurface singularity is a free divisor, and the theory of primitive forms [60] was
developed.

3. Free arrangement and free multiarrangement

The freeness of an arrangement of hyperplanes sets strict limitations on the char-
acteristic polynomials and the number of chambers, because of the factorization the-
orem (Theorem 3.4) and Zaslavsky’s formula (Theorem 2.2). In other words, the
“freeness” attaches algebraic and geometric meanings to the characteristic poly-
nomials and the number of chambers. Thus we may say that the combinatorial
structure of an arrangement of hyperplanes is controlled by the “freeness”. Fur-
thermore, the concept of freeness gives a nice framework in which the algebraic
and geometric methods are applicable to the pure combinatorial problems. For
example, the settlement of Edelman-Reiner’s conjecture [33, 86] about the freeness
of the generalized Catalan arrangements and the generalized Shi arrangements is
positioned in such a framework. The combinatorial results about the characteris-
tic polynomial and the number of chambers obtained in [86] contain results which
cannot be proved by only purely combinatorial consideration at this writing.

In this chapter, we will survey the flow of research activities which started from
the day when the study of free arrangement of hyperplanes was born to this day
via the settlement of Edelman-Reiner’s conjecture.

3.1. Early studies. The following criterion for the freeness of D(A) is well-known:

Theorem 3.1 (K.Saito [59]). Let δ1, . . . , δ� ∈ D(A), and put the vector fields

δi =
∑�

j=1 fij(∂/∂xj). Then D(A) = S · δ1 ⊕ · · · ⊕ S · δ� if and only if det(fij) is a
non-zero constant multiple of Q.

This theorem is called “Saito’s criterion”. It is a nice criterion in the sense that
it immediately determines whether a given candidate of a basis is actually a basis
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or not. Even if we do not have any basis candidate, the criterion is still important
theoretically.

We say that an arrangement of hyperplanes is central when every hyperplane
H ∈ A passes through the origin 0 ∈ V , namely the defining polynomial Q is a

homogeneous polynomial. Then the Euler vector field E =
∑�

i=1 xi(∂/∂xi) ∈ D(A)
always belongs to the module of logarithmic vector fields. In Chapter 3, we assume
that all arrangements are central. When a central arrangement A is free, D(A) has
a basis consisting of homogeneous vector fields2 δ1, . . . , δ�. Then the tuple of the
degrees of a basis (deg δ1, . . . , deg δ�) is called the exponents denoted by exp(A).
The exponents are independent of the choice of a basis. Furthermore, as mentioned
later, if we assume the arrangement A is free, then the exponents are determined
combinatorially (depending only on the structure of L(A)).

The freeness of an arrangement of hyperplanes is defined algebraically, however
we can sometimes show the freeness by a combinatorial way. In combinatorial
arguments of an arrangement of hyperplanes, focusing on the triple (A,A′,A′′) is a
typical method. The following theorem is called the Addition-Deletion theorem
which describes how the freeness of the triple behaves.

Theorem 3.2 ([75]). Any two of the following statements with respect to the triple
(A,A′,A′′) imply the third:

(i) A is free with exp(A) = (d1, . . . , d�).
(ii) A′ is free with exp(A) = (d1, . . . , d�−1, d� − 1).
(iii) A′′ is free with exp(A) = (d1, . . . , d�−1).

(This formulation is given by P. Cartier [21].)

An arrangement is called inductively free if it can be proved to be free by
inductively applying Theorem 3.2. More accurately, we define the set of inductively
free arrangements as the smallest class IF of arrangements of hyperplanes satisfying
the following properties:

(1) the empty arrangement A = ∅ is contained in IF for any dimension,
(2) if A′,A′′ ∈ IF and exp(A′′) ⊂ exp(A′), then A ∈ IF .

Many free arrangements are inductively free, but there exist free arrangements
which are not inductively free. Combining Theorem 3.2 and the inductive formulas

of characteristic polynomial, χ(A, t) =
∏�

i=1(t − di) holds for an inductively free
arrangement A.

The fiber type arrangements form an important class from the topological
viewpoint. Let X ∈ L(A) be a subspace satisfying r(X) = r(A) − 1. Put AX :=
{H ∈ A | X ⊆ H}. Then we say that A has a fiber structure in X-direction
when the projection to X-direction

M(A) −→ M(AX/X)

is a topological fiber bundle (the fiber is K(K = R or C) minus |A \ AX | points).
Here AX/X is the arrangement of hyperplanes in V/X defined by AX . The above
condition is equivalent to the combinatorial condition that there exists a hyperplane
H ∈ A including X ∪ Y for any Y ∈ L(A), codimY ≥ 2. We say that A is
fiber type when there exists a sequence (flag) of subspaces X0 � X1 � · · · �

2A vector field δ =
∑

i fi(∂/∂xi) is homogeneous if the coefficients fi are homogeneous poly-
nomial and deg f1 = · · · = deg f�. Moreover, define the degree of δ by deg δ = deg fi. This integer
is larger than the degree as a differential operator by one.
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Xr−1 � Xr = V (r = rankA) such that AXk
/Xk has a fiber structure in Xk+1/Xk-

direction. This implies that A can be constructed as a pagoda of fiber structures.
The fiber type arrangements were introduced from a geometric viewpoint. It was,
however, shown later ([78]) that A is fiber type if and only if the intersection poset
L(A) is a supersolvable lattice ([70, 71]) introduced by Stanley. The fiber type
arrangements form an important class of free arrangements. It was shown that the
fiber type arrangements are inductively free hence they are free arrangements. Also
the complements of complex fiber-type arrangements are K(π, 1) spaces because
of their fiber structures and their fundamental groups are (iterated) semi-direct
products of free groups.

Example 3.3. Let A(A�−1) be the arrangement of hyperplanes defined by the
polynomial Q(x1, . . . , x�) =

∏
1≤i<j≤�(xj − xi). This arrangement is called the

Coxeter arrangement of the type A�−1 and is a fiber type arrangement. In fact, the
complement of A(A�−1) is

M(A(A�−1)) = {(x1, . . . , x�) ∈ K� | xi �= xj},
hence if we put X = {x2 = x3 = · · · = x�}, then the projection to X-direction is
given as

M(A(A�−1)) −→ M(A(A�−2)) : (x1, x2, . . . , x�) �−→ (x2, . . . , x�).

This map is a fiber bundle whose fiber is K \ {x2, . . . , x�} and has a fiber structure
to the X-direction. We can verify that A(A�−1) is fiber type by the induction on
the dimension �. Therefore it is an inductively free arrangement, in particular,
it is a free arrangement. We can explicitly construct a basis for the module of

logarithmic vector fields D(A(A�−1)) as follows. Put δk =
∑�

i=1 x
k
i (∂/∂xi), and

δ0, δ1, . . . , δ�−1 ∈ D(A(A�−1)). Since the determinant of the coefficient matrix is
equal to Q (Vandermonde’s formula), it follows from Saito’s criterion that A(A�−1)
is a free arrangement.

Even if an arrangement is fiber type or inductively free, it is hard in general
to construct an explicit basis for D(A). However, for the Coxeter arrangements
including the typeA�−1, we can construct a basis by an invariant-theoretical method
(Section 3.6).

Finally we will explain the factorization theorem of characteristic polynomials
for free arrangements.

Theorem 3.4 ([76]). Let A be a free arrangement with exp(A) = (d1, . . . , d�).
Then the characteristic polynomial of A factors into linear polynomials over Z as

χ(A, t) =
�∏

i=1

(t− di).

The theorem asserts that the exponents of a free arrangement A are the roots of
the characteristic polynomial. Thus the exponents of a free arrangement are combi-
natorially determined. Later, this result was generalized to the formula (Solomon-
Terao’s formula [68]) which describes the characteristic polynomial χ(A, t) by using
the Hilbert series of Ωp(A) (p = 0, 1, . . . , �).

As Theorem 3.4 above shows, the freeness of A imposes strong constraints on the
combinatorial structures of L(A). Since there are plenty of arrangements which are
free and K(π, 1) such as fiber type arrangements and the Coxeter arrangements,
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it was conjectured that all free arrangements are K(π, 1) in an early study of free
arrangements. Furthermore, it was also conjectured that the restriction A′′ is free
for a free arrangement A, but a counterexample is known for each of them now
([32, 31]). On the other hand, the conjecture “the freeness of A is characterized
by only the structure of the intersection poset L(A) (for a fixed field K)” (Terao’s
conjecture [77]) is still open when the dimension is three or more.

3.2. The freeness of multiarrangements by Ziegler. From the definition, a
logarithmic vector field δ ∈ D(A) of an arrangement of hyperplanes A is tangent
to each hyperplane in A. Therefore, for a hyperplane H ∈ A, δ induces the tangent
vector field δ|H on H, and it belongs to D(AH). However, in general, a hyper-
plane K ∈ AH in the restriction is contained in several hyperplanes in A. Put
AK = {H,H ′, H ′′, . . . }. Since the δ is tangent to all hyperplanes H,H ′, H ′′, . . . ,
it is natural to consider that δ|H is tangent to K with a multiplicity.3 Ziegler’s
theory of multiarrangements of hyperplanes formulates this natural and important
idea. In general, for an arrangement A and a map m : A −→ Z≥0, the pair
(A,m) is called an arrangement of hyperplanes with a multiplicity (or sim-

ply a multiarrangement). For a multiarrangement, Q(A,m) =
∏

H∈A α
m(H)
H is

called a defining polynomial of (A,m). First, we will define the vector fields of a
multiarrangement.

Definition 3.5. Let (A,m) be a multiarrangement and fix a defining polynomial
αH ∈ V ∗ for each hyperplane H ∈ A. Then we define D(A,m) as follows:

D(A,m) = {δ ∈ DerV | δ(αH) ∈ (αH)m(H)S, ∀H ∈ A}.
When a multiplicitym is the constant mapm(H) = 1 (∀H ∈ A), thenD(A,m) =

D(A) (Definition 2.4). Therefore D(A,m) is a generalization of the module of vec-
tor fields D(A). A module D(A,m) is a reflexive module, thus when dimV = 2 the
module is automatically free. We can also formulate the freeness and the exponents
for multiarrangements, and Saito-Ziegler’s criterion ([93]) similar to Theorem 3.1
holds for them.

Multiarrangements naturally appear when we consider the restriction of an ar-
rangement of hyperplanes. More specifically, we can consider the following multi-
plicity mH for the restriction AH of A to H ∈ A:

mH(K) = |{H ′ ∈ A | H ∩H ′ = K}| , (K ∈ AH).

The following result by Ziegler is the most fundamental result with respect to free
arrangements and free multiarrangements. It was the starting point of the recent
characterizations of the freeness by using multiarrangements in Section 3.3.

Theorem 3.6 (Ziegler [93]). Let A be a free arrangement with exponents (1, d2, . . . ,
d�).

4 Then, for a hyperplane H0 ∈ A, (AH0 ,mH0) is a free multiarrangement with
exponents (d2, . . . , d�).

It is not so hard to verify the theorem. The outline is as follows. First, we
fix a coordinate (x1, . . . , x�) so that H0 = {x� = 0}. Consider the submodule
D0(A) := {δ ∈ D(A) | δx� = 0} of D(A). In other words, D0(A) is the set

3More accurately, the Euler vector field is tangent to K with only one multiplicity. Ziegler
proved that the restrictions of the vector fields except the Euler vector field may be tangent
to each hyperplane with a multiplicity more than one.

4When A �= ∅, since the Euler vector field is always in D(A), we may suppose that d1 = 1.
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of all elements in D(A) which are spanned by (∂/∂x1), . . . , (∂/∂x�−1). Moreover,
geometrically, each element of D0(A) is a vector field parallel to H0. Then we can
see that D(A) = S · E ⊕ D0(A), and δ|x�=0 ∈ D(AH0 ,mH0) for the restriction
of δ ∈ D0(A) to H0. (Here E stands for the Euler vector field.) When A is a
non-empty free arrangement, we can choose a basis E, δ2, . . . , δ� for D(A) so that
δi ∈ D0(A), (i = 2, . . . , �); then it follows from Saito-Ziegler’s criterion that the
restrictions δ2|H0

, . . . , δ�|H0
to H0 form a basis for D(AH0 ,mH0).

At first, Ziegler [93] introduced the theory of multiarrangements as an approach
to the conjecture (later a counterexample was given) which states that “any restric-
tion of a free arrangement is free”. However, the theory later played an extremely
important role in proving the freeness of generalized Catalan/Shi arrangements
(Edelman-Reiner’s conjecture) [33, 86]. Ziegler’s result asserts that “A is free ⇒
(AH0 ,mH0) is a free multiarrangement”. Conversely, it is quite natural to ask
whether we can prove the freeness of A by using Ziegler’s result. Accordingly, we
may apply the following strategy to show the freeness of A:

(a) Show the freeness of the restriction (AH0 ,mH0), and then construct a basis
δ2, . . . , δ� ∈ D(AH0 ,mH0).

(b) Extend δi to an element of D(A).

In regard to (a), as mentioned below, basic tools have been put in place, and
various methods for determining the freeness/non-freeness have been established.
Above all things, the Coxeter arrangements have been studied in depth by using
invariant-theoretical methods. On the other hand, no general method to execute
(b) has been found so far. In the case of the Shi arrangements associated with
root systems, the search for the above-mentioned general method is currently in
progress ([74, 73, 39]).

The proof of Theorem 3.6 tells us that, if A is free, then the restriction map

ρ : D0(A) −→ D(AH0 ,mH0), δ �−→ δ|x�=0,

is surjective. Conversely, if we verify that D(AH0 ,mH0) is free and ρ is surjective,
then we may obtain a free basis for D(A) by taking the inverse image of a basis for
D(AH0 ,mH0), adding the Euler vector field, and applying Saito’s criterion.

Corollary 3.7. Let A be an arrangement of hyperplanes. Fix a hyperplane H0 ∈
A. If (AH0 ,mH0) is free with exponents (d2, . . . , d�) and the restriction map ρ :
D0(A) −→ D(AH0 ,mH0) is surjective, then A is free with exponents (1, d2, . . . , d�).

Therefore if we can show that

(b’) the restriction map ρ : D0(A) −→ D(AH0 ,mH0) is surjective

instead of the “natural strategy” (b) above, then we may prove the freeness of A
(however, in this case, we cannot obtain an explicit basis for D(A)). In the next
section, we will give several conditions for ensuring this surjectivity.

3.3. Characterizations of the freeness by using a multiarrangement. We
have described several conclusions obtained from the freeness of arrangements of
hyperplanes so far. The following three properties play important roles in charac-
terizing the freeness. When A is a free arrangement with exponents (d1, d2, . . . , d�)
with d1 = 1,



52 HIROAKI TERAO AND MASAHIKO YOSHINAGA

(1) the characteristic polynomial factors, and is expressed as

χ(A, t) =

�∏
i=1

(t− di)

(Theorem 3.4),
(2) for X ∈ L(A), X �= 0, the localization AX = {H ∈ AX | X ⊂ H} with

respect to X is also free (the locally freeness),
(3) the restriction (AH ,mH) is a free multiarrangement with exponents (d2, . . . ,

d�) (Theorem 3.6 by Ziegler).

None of these three properties implies the freeness of A. As for (1), an example of
three-dimensional non-free arrangement is known whose characteristic polynomial
factors (Stanley, Kung [47]). When � = 3, the localization AX and the restriction
(AH ,mH) are both of rank 2, thus they are free. Therefore, (2) and (3) are always
satisfied for any arrangement when � = 3 (however, of course, even if � = 3, there
exists an arrangement which is not free).

In an interesting twist, by combining two of the above properties, we can char-
acterize the freeness of arrangements of hyperplanes.

Theorem 3.8 ([87]). Let A be an arrangement of hyperplanes in a three-dimensional
vector space, and χ(A, t) = (t − 1)(t2 − b1t + b2) the characteristic polynomial.
Since the restriction (AH ,mH) for H ∈ A is of rank 2, it is free. Put its exponents
(d2, d3).

(1) Coker(ρ : D0(A) −→ D(AH ,mH)) is finite dimensional, and the dimension
is equal to b2 − d2d3. In particular, the inequality b2 ≥ d2d3 holds.

(2) A is free if and only if the inequality b2 = d2d3 holds.

Theorem 3.9 ([86]). Let � ≥ 4, A be an arrangement of hyperplanes in a vector
space of dimension �, and fix a hyperplane H0 ∈ A. Then a necessary and sufficient
condition for A to be a free arrangement with exponents (1, d2, . . . , d�) is given by
the following two conditions:

(i) The restriction (AH0 ,mH0) is free with exponents (d2, . . . , d�), and
(ii) A is locally free along H0. That is to say, AX is free for X ∈ L(A), X ⊂

H0, X �= 0.

The proofs of Theorem 3.8 and Theorem 3.9 are not so hard if we regard both
of them as a splitting problem of when a coherent sheaf on projective space splits
into a direct sum of line bundles.5 To prove them, we use the idea introduced

by Mustaţǎ-Schenck [48] (also [67]), that is, considering the reflexive sheaf D̃(A)
on P�−1 obtained by the sheafification of the graded module D(A). In general, a

graded module M over a polynomial ring C[x0, . . . , xn] induces an OPn -module M̃

over Pn. Conversely, we can obtain a graded moduleM = Γ∗(M̃) over a polynomial

ring from OPn -module over Pn. If M̃ splits into a direct sum of line bundles in this
correspondence, then M is a free module. The following splitting criterion called
Horrocks’ theorem in splitting problems of vector bundles has been well known
among the researchers of vector bundles. Theorem 3.9 is proved by generalizing
Horrocks’ theorem to reflexive sheaves ([86, 9]).

5Theorem 3.8 was obtained from evaluating the dimension of the cokernel of the restriction
map ρ by using Solomon-Terao’s formula in [87]. We can prove Theorem 3.8 (2) purely as a result
with respect to vector bundles. For example, see [34, Corollary 2.12].
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Theorem 3.10 (Horrocks [49]). Let n ≥ 3 and fix a hyperplane H ⊂ Pn. A
vector bundle E on Pn splits as E = OPn(d1) ⊕ · · · ⊕ OPn(dr) if and only if the
restriction of E to H splits as E|H = OH(d1)⊕ · · · ⊕ OH(dr).

We may apply Horrocks’ criterion to prove Theorem 3.9 as follows: the condition

(ii) of Theorem 3.9 implies that D̃(A) is locally free around a neighborhood of

H0 ⊂ P�−1, thus D̃(A)|H0
= ˜D(AH0 ,mH0) follows. In brief, the restriction of the

sheaf D̃(A) coincides with the sheafification of the module of logarithmic vector

fields of a multiarrangement (AH0 ,mH0). Here we can see that ˜D(AH0 ,mH0) splits

from the hypothesis (i), and it follows from Horrocks’ criterion for D̃(A) to split.
Furthermore, we will introduce a characterization found recently. This may look

like a natural generalization of Theorem 3.8. However, in the proof, Theorem
3.9 and the general theory (Section 3.4) of the characteristic polynomials of multi-
arrangements by Abe-Terao-Wakefield [6] are used essentially.

Theorem 3.11 ([11]). Let � ≥ 4, A be an arrangement of hyperplanes in an �-
dimensional vector space, and fix a hyperplane H0 ∈ A. Assume that the restriction
(AH0 ,mH0) is free with exponents (d2, . . . , d�). Set the characteristic polynomial of
A as

χ(A, t) = (t− 1)(t�−1 − b1t
�−2 + b2t

�−3 − · · ·+ (−1)�−1b�−1);

then

(i) b2 ≥
∑

2≤i≤j≤�

didj .

(ii) A is free if and only if the equality in (i) holds.

From this result, we verify that if the freeness (as well as its exponents) of the
restriction (AH ,mH) is known, then the freeness of A is characterized by only its
combinatorial structure. This suggests that the assumption that “the freeness of
the restriction” is a strong constraint.

3.4. General theory of the freeness of multiarrangements. As described in
Section 3.3, one of the motivations to study the freeness of multiarrangements is
that the freeness of an �-dimensional arrangement A is characterized by the free-
ness (the exponents) of (� − 1)-dimensional multiarrangement (AH ,mH) and its
combinatorial structure. The studies of free multiarrangements can be split into
two categories: One is to generalize known results of (non-)free multiarrangements.
The other is to investigate peculiar properties of free multiarrangements. For the
latter, the studies in the cases of dimension two have been advanced; we will de-
scribe it in Section 3.5. For the former, the characteristic polynomials for multi-
arrangements are defined by [6, 7], and the Addition-Deletion theorem (Theorem
3.2) is generalized to multiarrangements. Using these results, we may determine
the freeness/non-freeness for many examples of multiarrangements. For example,
as applications, the (non-) freeness is completely determined for the following two
extreme cases:

(1) When an arrangement is generic, (A,m) is not free for any multiplicity
m : A −→ Z>0 ([6, 89]).

(2) If (A,m) is free for any multiplicity m : A −→ Z>0, then A is a direct
product of arrangements of dimension less than or equal to two ([8]).
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When we fix A, the free multiplicities and the non-free multiplicities coexist except
in these extreme cases. The only case of the (non-) freeness being completely
determined other than the cases above is the case of deleting one hyperplane from
the arrangement of the type A3 ([2]).

3.5. General theory of two-dimensional multiarrangements. As mentioned
in the previous section, it can be said that there is essentially as much difficulty in
showing the freeness of an �-dimensional arrangement as in showing the freeness of
an (�−1)-dimensional multiarrangement. For example, in order to show the freeness
of a three-dimensional arrangement, it is sufficient to determine the exponents
of a two-dimensional multiarrangement. The two-dimensional arrangements are
always free, however, in general, it is difficult to determine the exponents of a
multiarrangement even if the dimension is two, due to phenomena like the following:

Example 3.12. Let t ∈ C \ {0,−1}, and consider the two-dimensional mul-
tiarrangement x3y3(x − y)1(tx + y)1. When t = 1, then δ1 = x3∂x + y3∂y,
δ2 = x5∂x + y5∂y form a basis for D(A,m) with exponents (3, 5). However, when
t �= 1, then δ1 = (tx + y)(x3∂x + y3∂y), δ2 = (x − y)(t2x3∂x + y3∂y) form a basis
for D(A,m) with exponents (4, 4).

Such a “jump” of the exponents of a two-dimensional arrangement is a pecu-
liar phenomenon in the case that the arrangement has a multiplicity. The two
main themes of this section are to study: 1) under what conditions the exponents
do/don’t jump, and 2) how the exponents jump. In what follows, we will introduce
several basic results.

For a line arrangement A = {H1, . . . , Hn}, let αi ∈ S = C[x, y] be the defining
polynomial of Hi. Since D(A,m) is a reflexive S-module, it is a free module (be-
cause it is two-dimensional). Let δ1, δ2 be a basis for the module and mi = m(Hi);
then

(3.1) deg δ1 + deg δ2 =

n∑
i=1

mi.

It is known that the jumping phenomena like Example 3.12 do not occur under the
following conditions:

Theorem 3.13. Let A = {H1, . . . , Hn}, m : A −→ Z>0 be a two-dimensional
multiarrangement, and the multiplicities satisfy m1 ≥ m2 ≥ · · · ≥ mn. Put |m| =∑n

i=1 mi the sum of the multiplicities.

(1) If m1 ≥ |m|/2, then exp(A,m) = (m1, |m| −m1).
(2) If n ≥ (|m|/2) + 1, then exp(A,m) = (m− n+ 1, n− 1).
(3) If m1 = m2 = · · · = mn = 2, then exp(A,m) = (n, n).
(4) If n = 3 and m1 ≤ m2 +m3, then

exp(A,m) =

{
(k, k), when |m| = 2k,
(k, k + 1), when |m| = 2k + 1.

In regard to (1) and (2), we can explicitly construct a basis. (3) was verified by
Wakefield-Yuzvinsky [84]. As for (4), Wakamiko [83] constructed an explicit basis
by using the special values of the Schur functions. The assertion of Theorem 3.13 (1)
is, roughly speaking, if there is a line with extremely high multiplicity (specifically,
the multiplicity is greater than or equal to half of the sum of the multiplicities),
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then we can explicitly construct a basis, and determine the exponents. We may
naturally regard such a multiplicity to be exceptional.

Definition 3.14. Let (A,m) be a two-dimensional multiarrangement. When the
inequality

m(H) ≤ 1

2

∑
K∈A

m(K)

holds for any H ∈ A, we say that the multiplicity m is balanced.

The sum of the two exponents of a two-dimensional multiarrangement is the
sum of the multiplicities because of (3.1). Therefore, determining the exponents is
equivalent to determining the difference between them. Put

(3.2) Δ(A,m) = |d1 − d2|
the difference of exp(A,m) = (d1, d2). In the unbalanced case, it turns out that
Δ(A,m) is determined only by the combinatorial information because of Theorem
3.13. However, in the balanced case, the jumping phenomena like Example 3.12 can
occur, hence Δ may not be determined only by the combinatorial information. More
precisely, let Mn = {(a1, . . . , an) ∈ (P1)n | ai �= aj (i �= j)} be the configuration
space of n points on P1. Fix a multiplicity (m1, . . . ,mn). For a point (a1, . . . , an) ∈
Mn, consider the multiarrangement (A,m) defined by Q(A,m) =

∏n
i=1(y−aix)

mi .
Then we can define the function Δ : Mn −→ Z≥0, (a1, . . . , an) �−→ Δ(A,m). The
most basic results concerning the function Δ are as follows:

Theorem 3.15. Let m : {1, . . . , n} −→ Z>0 be a balanced multiplicity. Then

(i) Δ : Mn −→ Z≥0 is upper semi-continuous. (In other words, {A ∈ Mn |
Δ(A,m) < k} ⊂ Mn is a Zariski open set for any k ∈ R.)

(ii) ([84]) There exists a non-empty Zariski open set U ⊂ Mn such that Δ(A,m)
≤ 1 for any A ∈ U .

(iii) ([1]) For any A ∈ Mn, Δ(A,m) ≤ n− 2.

Therefore, for a generic arrangement A, Δ(A,m) = 0 or 1 according to whether
|m| is even or odd. Moreover, in general, it is known that Δ(A,m) is not greater
than the number of lines minus two. However, for example, it is not known that for
what kind of m : {1, . . . , n} → Z>0, there exists A ∈ Mn which attains the upper
bound Δ(A,m) = n− 2.

3.6. The primitive derivation and the freeness of Coxeter multiarrange-
ments. Coxeter arrangements are the first class of arrangements verified to be free
([59]). Later, the freeness of the Coxeter multiarrangements with constant multi-
plicities were also proved ([79]). From the topological viewpoints, Deligne ([27])
proved that the higher homotopy groups of the complexified complements of the
Coxeter arrangements vanish. The class of the Coxeter arrangements have been
studied more deeply than any other classes so far ([62]). In this section, we will
introduce several results about the freeness of Coxeter (multi)arrangements.

Let V be a real vector space of dimension �, W a finite group generated by reflec-
tions of V , acting irreducibly on V . Then the set A of all reflecting hyperplanes is
called the Coxeter arrangement. Moreover, then the W -invariant inner product
on V is uniquely determined (up to a non-zero constant multiple). Let S = S(V ∗)

be the symmetric algebra of V ∗. The isomorphism I : V ∗ 	−→ V obtained from the
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inner product I is extended to the isomorphism (as S-modules) I : ΩV −→ DerV
between ΩV = S ⊗ V ∗ and DerV = S ⊗ V .

It is known that the invariant subring SW is expressed as a polynomial ring
R[P1, . . . , P�] (Chevalley [22]), where P1, . . . , P� are algebraically independent ho-
mogeneous polynomials which are called basic invariants. The tuple (e1, . . . , e�)
of ei = degPi − 1 is called the exponents of W . Order them in such a way
that e1 ≤ e2 ≤ · · · ≤ e�. Then e�−1 < e� holds. This inequality will play
an important role when we define the primitive derivation later. The product
Δ =

∏
H∈A αH of defining polynomials αH of hyperplanes H is a generator of the

set S−W = {f ∈ S | w(f) = det(w)f, w ∈ W} = SW · Δ of antiinvariants as an
SW -module. Fix coordinates x1, . . . , x�; then it is classically known that

(3.3) Δ = det

(
∂Pi

∂xj

)
ij

holds true up to a constant multiple. By using the equality (3.3) and Saito’s crite-
rion, we can explicitly construct a free basis for D(A) of the Coxeter arrangement.

Theorem 3.16 (Saito [59]). With the notation above, for the Coxeter arrangement

A, the module of W -invariant vector fields decomposes as DerWV = SW · I(dP1) ⊕
· · ·⊕SW · I(dP�). Moreover, DerWV ⊗SW S = D(A) holds. In particular, A is a free
arrangement with exponents exp(A) = (e1, . . . , e�).

We regard basic invariants (P1, . . . , P�) as coordinates of the quotient space
V/W = SpecSW , and (∂/∂P1), . . . , (∂/∂P�) as vector fields on the quotient space.
Since the degrees satisfy degP� > degPi, (∀i �= �), D := (∂/∂P�) is independent
of the choice of basic invariants (up to a non-zero constant multiple). We call this
vector field D the primitive derivation. The primitive derivation is characterized
by DPi = δi�. By using a coordinate system of V , the primitive derivation D is a
W -invariant rational vector field which has an expression

(3.4) D =
1

Δ
· det

⎛⎜⎜⎜⎝
(∂P1/∂x1) · · · (∂P�−1/∂x1) (∂/∂x1)
(∂P1/∂x2) · · · (∂P�−1/∂x2) (∂/∂x2)

...
. . .

...
...

(∂P1/∂x�) · · · (∂P�−1/∂x�) (∂/∂x�)

⎞⎟⎟⎟⎠ .

Let ∇ denote the Levi-Civita connection defined by the metric I. (This can be
expressed as

∑
i fi(∂/∂xi) =

∑
i δ(fi)(∂/∂xi)) by the coordinates x1, . . . , x�.) In

the theory of Kyoji Saito’s primitive derivation, for the fixed primitive form, we can
identify the relative de Rham cohomology of a family of semi-universal deforma-
tions of isolated hypersurface singularities with the vector fields of the base space.
From this identification, geometric structures such as the Gauss-Manin connection
of a relative de Rham cohomology and the Hodge filtration bring about the flat
structure (the Frobenius structure) to the vector fields in the base space. When the
singularities are of the types ADE, the parameter space of the semi-universal de-
formation can be identified with the quotient space V/W of the corresponding Weyl
group, and the flat structure can be described from the viewpoints of the invariant
theory of the Coxeter groups. The following Theorem 3.18 forms a foundation of
invariant-theoretic construction of the flat structure. It plays an important role
also in the freeness of the Coxeter multiarrangement.
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Theorem 3.17 ([61, 62]). The covariant derivative ∇D defined by the primitive

derivation induces an isomorphism6 ∇D : D(A)W
	−→ DerV/W .

From this result, the inverse map ∇−1
D acts on D(A)W and has a filtration

(3.5) · · · ⊂ ∇−2
D D(A)W ⊂ ∇−1

D D(A)W ⊂ D(A)W .

This filtration plays an important role in studying the Coxeter multiarrangements.
The inverse map ∇−1

D has an action which raises the contact order of vector fields
to each hyperplane.

Theorem 3.18 ([69, 79, 80, 85, 10]). Let A be a Coxeter arrangement with exp(A)
= (e1, . . . , e�), and h = e� + 1 the Coxeter number. Let m : A −→ {0, 1} be a
{0, 1}-valued multiplicity. Then

(1)

D(A, 2k +m) � D(A,m)[−kh] (k ∈ Z≥0),

D(A, 2k −m) � (D(A,m)∨) [−kh] � Ω1(A,m)[−kh] (k ∈ Z>0),
(3.6)

where, for a graded module M =
⊕

n∈Z Mn, M [d] is a graded module obtained by
shifting the degree by d (M [d]n := Md+n).

(2) (m ≡ 1) The multiarrangement (A, 2k + 1) is free with exp(A, 2k + 1) =
(e1 + kh, . . . , e� + kh) when k ∈ Z≥0.

(3) (m ≡ 0) The multiarrangement (A, 2k) is free with exp(A, 2k) = (kh, kh, . . . ,
kh) when k ∈ Z≥0.

3.7. The freeness of the generalized Catalan/Shi arrangements. In 1996,
Edelman-Reiner [33] discovered a family of free arrangements associated with the
root system of the type A when they were studying the condition for the discrimi-
nant arrangement of hyperplanes defined by a two-dimensional zonotope to be free.
They conjectured the freeness of the generalized Catalan arrangements and the gen-
eralized Shi arrangements associated with root systems in the form of generalizing
the discovery ([33, Conjecture 3.3]). Fix a positive root system Φ+ ⊂ Φ of a root
system Φ ⊂ (R�)∗. Put Hα,p = {v ∈ R� | α(v) = p} for α ∈ Φ+ and an integer

p ∈ Z. Define an affine arrangement of hyperplanes A[a,b]
Φ for integers a ≤ b by

(3.7) A[a,b]
Φ := {Hα,p | α ∈ Φ+, a ≤ p ≤ b}.

This can be regarded as a finite subarrangement of the arrangement consisting of
reflecting hyperplanes of an affine Weyl group. Among the cones of these arrange-

ments, Edelman and Reiner conjectured that cA[−k,k]
Φ (the cone over the Catalan

arrangement) and cA[1−k,k]
Φ (the cone over the Shi arrangement) are free. The

conjecture was settled in 2004 by combining results in [79] and [86].

Theorem 3.19 (Yoshinaga [86]). Let Φ be a root system, e1, . . . , e� its exponents,
and h the Coxeter number.

(1) The cone over the generalized Catalan arrangement cA[−k,k]
Φ is free with

exponents exp(cA[−k,k]
Φ ) = (1, e1 + kh, . . . , e� + kh).

(2) The cone over the generalized Shi arrangement cA[1−k,k]
Φ is free with expo-

nents exp(cA[1−k,k]
Φ ) = (1, kh, . . . , kh).

6This map is not a homomorphism as S-modules. Define the subring T of S to be T = {f ∈
SW | Df = 0}; then ∇D induces an isomorphism as T -modules.



58 HIROAKI TERAO AND MASAHIKO YOSHINAGA

The proof follows from an induction on the rank of the root system. First, when
the rank is 2, it is sufficient to verify the case of the types A2, B2, G2 due to the
classification of root systems, hence we check them separately. Next, when the
rank is greater than or equal to 3, we apply Theorem 3.9 to the restriction onto the
hyperplane H0 at infinity. The condition (i) in Theorem 3.9 “the freeness of the
restriction” can be proved in Theorem 3.18 (2), (3), and the condition (ii) “locally
free alongH0” is derived from the induction hypothesis. In more detail, forX ⊂ H0,

(cA[a,b]
Φ )X is the direct sum of several arrangements A[a,b]

Φ′ for root systems Φ′ of

lower ranks. Therefore, (cA[a,b]
Φ )X turns out to be free from this theorem for root

systems of lower ranks. As bases for the modules of logarithmic vector fields of the
Coxeter arrangements are constructed (Theorem 3.16), it is expected that basis for
the modules of logarithmic vector fields of the generalized Catalan arrangements
and the generalized Shi arrangements are also constructed explicitly in some way.
Research is now in progress for individual cases (Suyama-Terao [74], Suyama [73],
Gao-Pei-Terao [39]). In these cases, the Bernoulli polynomials essentially appear
in the constructions of bases.

Applying Theorem 3.4 to the above freeness, we may explicitly describe the
characteristic polynomials.

Corollary 3.20. (1) The characteristic polynomial of the generalized Catalan

arrangement A[−k,k]
Φ is χ(A

[−k,k]
Φ , t) =

∏�
i=1(t− kh− ei).

(2) The characteristic polynomial of the generalized Shi arrangement A[1−k,k]
Φ

is χ(A[1−k,k]
Φ , t) = (t− kh)�.

There are various studies with respect to combinatorial properties of arrange-
ments of hyperplanes associated with such root systems. It is known that the char-

acteristic polynomial χ(A[a,b]
Φ , t) factors into linear polynomials only in the above

two cases. Even when the characteristic polynomial does not factor, the following
remarkable property is conjectured:

Conjecture 3.21 ([54]). Let integers a, b satisfy 0 ≤ a < b. Then the real part of

any root t ∈ C of the characteristic polynomial χ(A[−a,b]
Φ , t) = 0 satisfies �(t) =

(a+ b+ 1)h/2.

This conjecture asserts that the zeros of the characteristic polynomial lie on the
line satisfying that the real parts are (a + b + 1)h/2, as a conclusion, also asserts
the following non-trivial relation holds:

χ(A[−a,b]
Φ , (a+ b+ 1)h− t) = (−1)�χ(A[−a,b]

Φ , t).

Conjecture 3.21 verified for the root systems of the types A,B,C,D, and the several
other cases of special parameters by using the classification of root systems at
this writing ([17]). It is expected that we can explain the conjecture by algebraic
properties of logarithmic vector fields, however it is still open.

In the proof of the Edelman-Reiner conjecture, the multifreeness of the restriction
onto the hyperplane H0 at infinity plays an important role. Theorem 3.18 shows
that there are many non-constant multiplicities m : A −→ {n, n + 1} which make
D(A,m) free. In order to answer the question asking whether there exists a free
arrangement whose restriction is equal to the (A,m) or not, we have to study the
existence of a series of the free arrangements interpolating between the generalized
Catalan and Shi arrangements. We do not know how to answer the question even
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when the multiplicity is m : A −→ {0, 1} (this corresponds to free arrangements
interpolating between the empty arrangement and the Coxeter arrangement). How-
ever, for example, we know the following beautiful relation between a combinatorial
structure of a root system and the exponents: Let Φ+ = Φ+

1 � Φ+
2 � · · · � Φ+

p be a

partition by heights7 of positive roots. Then the dual partition8 m� ≥ · · · ≥ m1 of
a partition |Φ+

1 | ≥ |Φ+
2 | ≥ · · · ≥ |Φ+

p | of a natural number |Φ+| coincides with the
exponents (Arnold Shapiro, R. Steinberg [72, §9], B. Kostant [46]). The following
conjectures which naturally extend the above relation were brought up:

Conjecture 3.22. We say that Ψ ⊂ Φ+ is the height subset if α ∈ Ψ, β ∈
Φ+, ht(β) < ht(α) implies β ∈ Ψ. If Ψ ⊂ Φ+ is a height subset, then AΨ = {Hα,0 |
α ∈ Ψ} is a free arrangement and its exponents are given by the dual partition of
height distribution of Ψ.9

Conjecture 3.23. Let (n1, n2, . . . , nq) be the dual partition of the height distribu-
tion of a height subset Ψ.

(1) c
(
A[1−k,k]

Φ ∪ {Hα,−k | α ∈ Ψ}
)

is a free arrangement and its � exponents

are (kh+ n1, . . . , kh+ nq, kh, . . . , kh).

(2) c
(
A[1−k,k]

Φ \ {Hα,k | α ∈ Ψ}
)
is a free arrangement and its � exponents are

(kh− n1, . . . , kh− nq, kh, . . . , kh).
10

Recently in [4], Abe-Terao introduced the special basis for D0

(
c
(
A[1−k,k]

Φ

))
which is called SRB (simple-root basis), the behavior of the freeness in the case
of adding one hyperplane to (or deleting one hyperplane from) the generalized Shi
arrangement was completely understood by the following theorem:

Theorem 3.24 ([4]). (1) c
(
A[1−k,k]

Φ ∪ {Hα,−k}
)
is a free arrangement if and

only if α ∈ Φ+ is a simple root.

(2) c
(
A[1−k,k]

Φ \ {Hα,k}
)

is a free arrangement if and only if α ∈ Φ+ is a

simple root.

4. Topologies of complex complements

There are a large number of topological researches of arrangements of hyper-
planes. Thus we focus the two basic themes of the “combinatorial determinative-
ness” and the “minimality” in this chapter.

4.1. The Orlik-Solomon algebra. In studies of arrangements of hyperplanes, we
often formulate problems in the form of “Is it combinatorially determined”? The
problems originate from the description, due to Orlik-Solomon, of the cohomology
ring of the complement. Let A = {H1, . . . , Hn} be a central arrangement over C.
Fix a letter ei for each hyperplane Hi. Let E =

⊕n
i=1 Zei be the free additive

group generated by the ei’s, and
∧
E the exterior algebra over Z. Define the linear

7When we express a positive root as a linear combination of simple roots, the sum of coefficient
is called the height. For example, a simple root is of height 1.

8In the dual partition of a partition (m1,m2, . . . ,mp)≥ of a positive integer N , a positive

integer k (1 ≤ k ≤ p) appears exactly mk −mk+1 times, where we agree that mp+1 = 0.
9This conjecture has been recently proved in [3] (added in translation).
10This conjecture has been recently proved in [5] (added in translation).
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map ∂ :
∧
E −→

∧
E by ∂(ei1ei2 . . . eik) =

∑k
p=1(−1)p−1ei1 . . . êip . . . eik . Call the

subset {Hi1 , . . . , Hik} ⊂ A dependent when codim(Hi1 ∩ · · · ∩ Hik) < k. Let IA
be the ideal of

∧
E generated by {∂(ei1ei2 . . . eik) | Hi1 , . . . , Hik are dependent}.

Then,

Theorem 4.1 ([50]). (
∧
E)/IA � H∗(M(A),Z).

The left hand side (
∧
E)/IA is called the Orlik-Solomon algebra of A. This

corresponds to the cohomology by

ei �−→
1

2π
√
−1

· dαHi

αHi

.

4.2. Oriented matroid and the Salvetti complex. By definition, the structure
of the Orlik-Solomon algebra uses only combinatorial information of “intersections”
of an arrangement. In other words, the cohomology ring of the complement M(A)
is determined only by the intersection poset L(A).

When an arrangement of hyperplanes is defined over the real number field R,
we can consider a stronger “combinatorial structure”, which is called the oriented
matroid. The oriented matroid is a combinatorial object with more information
than L(A). It is known that we can completely restore the topological type of
M(A) out of its oriented matroid. Here, we briefly describe the construction of the
Salvetti complex which plays an important role in the topological study of M(A).
First, let {−1, 0,+1} be the set of signs, and define the partial order 0 � −1,
0 � +1 (±1 are incomparable). Then it induces the natural partial order (ai)

n
i=1 �

(bi)
n
i=1 ⇐⇒ ai � bi, ∀i on sign vectors a = (ai)

n
i=1, b = (bi)

n
i=1 ∈ {−1, 0,+1}n.

Define the composition a ◦ b ∈ {−1, 0,+1}n of sign vectors by

(a ◦ b)i =
{

bi (bi �= 0),
ai (bi = 0).

Let A = {H1, . . . , Hn} be a central arrangement of hyperplanes in R� over the real
number field R. Fix a defining polynomial αH ∈ (R�)∗ for each hyperplane H ∈ A.
Define the map σA as

σA : R� −→ {−1, 0,+1}n, x �−→ (sgnαH1
(x), . . . , sgnαHn

(x)).

The image σA(R
�) ⊂ {−1, 0,+1}n of the map σA is called (the set of covectors

of) the oriented matroid of A. For a sign vector a ∈ σA(R
�), σ−1

A (a) ⊂ R� is
defined by a bunch of equalities and inequalities of linear functions. Hence it is
contractible, and R� =

⊔
a∈σA(R�) σ

−1
A (a) is a stratification of R� defined by A.

We can regard σA(R
�) as a combinatorial interpretation of the stratification

of R� defined by A. The minimal elements with respect to the order � can be
characterized by sign vectors with all its entries being non-zero, namely, being
chambers. Express the set of the minimal elements by T = σA(R

�) ∩ {−1,+1}n.
The partial order � corresponds to the adjacency relationship determined by the
topology on R�. We can define a partial order ≤ on S(A) = {(X,T ) ∈ σA(R

�)×T |
X � T} as follows:

(X ′, T ′) ≤ (X,T ) ⇐⇒ X ′ � X and T ′ = T ◦X ′.

Then, there exists a regular cell complex ΔSal(A) with partially ordered set (S(A),
≤) as its face lattice. This cell complex is called the Salvetti complex. It is
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known that the Salvetti complex ΔSal(A) is homotopy equivalent to the complex-
ified complement M(AC) ([63]). More strongly, we can restore the topology type
out of ΔSal(A) ([19]). The Salvetti complexes have been applied to calculation of
homologies of the Artin groups or the Coxeter groups.

4.3. Combinatorial structure and topologies. Identifying −1 with +1 in a
sign vector, we obtain the map |σA| : R� −→ {0, 1}n. Moreover, we have the
following diagram by using the absolute value function | · | : ±1 �−→ 1:

| · | : {0,±1}n −→ {0, 1}n
∪ ∪

σA(R
�) −→ |σA|(R�).

As we saw above, σA(R
�) has enough information to restore the topological type

of the complement M(A). On the other hand, |σA|(R�) and the intersection poset
L(A) essentially have the same amount of information, thus we can restore the
cohomology ring with coefficients in Z out of |σA|(R�) by Orlik-Solomon’s result.
For a rank 1 local system L on M(A) which is close to the trivial local system, 11 it
is known that we can restore the cohomology with coefficients in L from |σA|(R�)
([35]). However, |σA|(R�) seems to have only much less information than σA(R

�).
Indeed, Rybnikov constructed a pair A1,A2 of plane arrangements in C3 whose
intersection posets are isomorphic but the fundamental groups of their complements
are not isomorphic as groups ([57, 16]). Also, for an arrangement defined over the
real number field, it is conjectured that there exists an example that the intersection
posets are isomorphic but the fundamental groups are not, and many candidates
for them are found. However no one has ever verified that the fundamental groups
are not isomorphic (other than Rybnikov) at this writing. Another open problem is
whether the (co)homologies H∗(M(A),L) with coefficients in local systems or Betti
numbers of Milnor fibers of A are determined only by information of L(A) or not.
As we saw in this section, how much combinatorial structure is necessary to restore
various topological invariants is a central problem in the study of arrangements of
hyperplanes.

4.4. The minimality. We say that a finite �-dimensional CW-complex X is a
minimal CW-complex if

(the number of k-dimensional cells) = bk(X),

for k = 0, 1, . . . , �. Recall the process for calculating the homology by making use of
the chain complex from a CW-complex. Then we find that the inequality ≥ always
holds. In other words, the number of k-dimensional cells is bounded from below by
bk(X). The above equality holds when a CW-complex X has as few cells as possible
in CW-complexes of the same homotopy type. Around 2000, Dimca-Papadima [29]
and Randell [55] established that M(A) and a minimal CW-complex are homotopy
equivalent. The proof uses the Lefschetz type theorem [40] for affine varieties (the
complements of hypersurfaces). The minimality has been observed for various cases
since the 1970s ([41, 37, 53]).

11A local system of rank 1 one-to-one corresponds to a group homomorphism ρ : π1(M(A)) −→
C∗. Precise meaning of “local system L on M(A) which is close to the trivial local system” is
that there exists an open neighborhood U of the trivial local system in Hom(π1(M(A)),C∗) such
that local system cohomology is combinatorially determined if L ∈ U .
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Since the complement of a general hypersurface does not have minimality,12

the minimality can be said to be a characteristic property for arrangements of
hyperplanes. It is expected that the minimality has many applications for topologies
of arrangements of hyperplanes. When we try to apply it, then we face a bottleneck
of how to attach the cells of a minimal cell complex.

In the proof by using the Lefschetz theorem, there is no information with re-
spect to how to attach the cells. Currently, for an arrangement defined over the
real number field, description of the minimality including how to attach the cells is
addressed through two approaches. One is by Yoshinaga [88]: Analyzing the Morse
theoretic proof of the Lefschetz theorem, he corresponded the critical points of a
Morse function with a certain real domain by employing the real structure. In this
way, he described the homotopy types of the �-dimensional cells which are attach-
able to the hyperplane section M(A)∩F . The other is by Salvetti-Settepanella [64]:
Defining a discrete Morse function on the Salvetti complex, they combinatorially
described the gradient flow deforming the complex from the Salvetti complex to the
minimal CW-complex. For the former, there are applications with respect to 1) the
vanishing of cohomologies with coefficients in local systems of dimension two and
2) homogeneous representations for fundamental groups ([90, 91]). For the latter,
Delucchi generalized the result of [64] to oriented matroids, and verified that the
Salvetti complex of an oriented matroid has also the minimality ([28]).

5. Hypergeometric integrals associated with an arrangement

In this chapter, for simplicity, let A be a real arrangement of rank � and AC

its complexification. Let L be a local system of rank 1 on M(AC). As men-
tioned in Chapter 1, Aomoto’s hypergeometric integrals are expressed as the twisted
de Rham pairing of the local system cohomology and the local system homology.
Thus studies on the local system (co)homology are essential for us to understand the
hypergeometric functions. Especially, vanishing conditions, dimensions and basis
descriptions of the local system (co)homology are, among others, very important.
It goes without saying that the knowledge of topology of complex complements
is indispensable for the study. For example, as an application of the minimality
of M(AC) in the previous chapter, the following inequality in “Theory of Hyper-
geometric Functions” [14, Proposition 2.1, Remark 2.3] by Aomoto-Kita follows
immediately ([24]):

dimHk(M(AC),L) ≤ bk(M(AC)).

5.1. The vanishing theorem of local system (co)homologies. Next, we will
explain the refinement of the vanishing theorem, which is obtained as an application
of the minimal cell decomposition including how to attach the cells. First, we state
the vanishing and a basis description of the following local system (co)homology:

Theorem 5.1 ([13, 45, 30]). When L satisfies suitable genericity conditions, then

Hi(M(AC),L) � H lf
2�−i(M(AC),L) = 0 (i �= �)

and the bounded chambers bC(A) provide a basis for

H�(M(AC),L) � H lf
� (M(AC),L) � H�(M(AC),L).

12For example, the first Betti number of C2 \ {y2 = x3} is b1 = 1, however the fundamental
group is the braid group on three strings, so is not isomorphic to Z.
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(Here H lf
k is a locally finite homology.)

The above result without a basis description is simply called the “the vanishing
theorem”, which holds true under various conditions ([44, 35, 66, 23, 25]). It is
known that, when � = 2, the resonance conditions by Cohen-Dimca-Orlik [25] are
necessary and sufficient for the vanishing theorem with a basis description.

Theorem 5.2 (Yoshinaga [91]). Let A be a line arrangement in R2 which has
greater than or equal to three intersection points on the line H∞ at infinity. Then
the following are equivalent:

(1) The monodromies around the line H∞ at infinity and the intersection points
on H∞ is non-trivial.

(2) H0(M(AC),L) = H1(M(AC),L) = 0 and the bounded chambers bC(A)

form a basis for H2(M(AC),L) � H lf
2 (M(AC),L).

(3) H lf
2 (M(AC),L) is generated by the bounded chambers bC(A).

5.2. Bases for local system (co)homologies. When the vanishing theorem
(Theorem 5.1) holds true, the dimension of the unique non-trivial cohomology
H�(M(AC),L) is equal to the absolute value of the Euler characteristic of M(AC).
We will introduce a construction of a basis for the cohomology in accordance with
[38]. First, we impose a total order H1 ≺ H2 ≺ · · · ≺ Hn on AC .

Definition 5.3 (Björner-Ziegler [18], [43]). A minimal linearly dependent subset of
AC is called a circuit. When B is a circuit, a set of the form B \{minB} (minB is
the minimum element in B with respect to the given total order) is called a broken
circuit. Finally, we say that C is an nbc if C contains no broken circuit. We refer
to an nbc such that |C| = � as an nbc frame.

The set of all nbc provides a basis for the Orlik-Solomon algebra (4.1) as follows:

Theorem 5.4 (Björner-Ziegler [18], [43]). The set{
ei1 . . . eik + IA ∈

(∧
E
)
/IA | (Hi1 , . . . , Hik)≺ is an nbc

}
provides a basis for the Orlik-Solomon algebra (as a vector space). (Here the no-
tation (Hi1 , . . . , Hik)≺ implies that the sequence in the parentheses satisfies Hi1 ≺
· · · ≺ Hik .)

Definition 5.5 (Ziegler [94]). When C = (Hi1 , . . . , Hi�)≺ is an nbc frame, then we
say that C is a βnbc frame if, for an arbitrary H ∈ C, there exists some H ′ ∈ AC

such that H ′ ≺ H and (C \ {H}) ∪ {H ′} is linearly independent.

Let βnbc(AC) be the set of all βnbc frames.

Theorem 5.6 ([38]). Suppose that a local system has a suitable genericity, and the
vanishing theorem (Theorem 5.1) holds. Define

Xp :=
�⋂

k=p

Hik (1 ≤ p ≤ �), ξ(B) := (X1 < · · · < X�),

ωλ(X) :=
∑

X⊆H∈AC

λH(dαH/αH), ζ(B) :=
�∧

p=1

ωλ(Xp),

for each βnbc frame B = (Hi1 , . . . , Hi�)≺. Then {ζ(B) | B ∈ βnbc(AC)} provides
a basis for the local system cohomology H�(M(AC),L) (via the twisted de Rham
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correspondence). Here we assume that the monodromy of L around H is equal to
exp(2π

√
−1λH).

Schechtman and Varchenko [65], [82] (by using flags) constructed the dual basis
of the basis in Theorem 5.6 to describe solutions of the Knizhnik-Zamolodchikov
equations.

The above βnbc is naturally indexed by the set of bounded chambers bC(A).
Therefore, under the assumption of Theorem 5.1, we can construct a period matrix
whose rows and columns are both indexed by bC(A) due to the twisted de Rham
pairing

H�(M(A),L)×H�(M(A),L∨) −→ C.

Varchenko [81] conjectured a formula for the determinant of the period matrix. The
conjecture was affirmatively settled in [30] by adopting a βnbc basis for the local
system cohomology. The proof deeply relies on the fact that βnbc bases behave
well for the triples (Definition 2.3).
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Sup. 6 (1973), 317–355.

41. A. Hattori, Tolopogy of Cn minus a finite number of affine hyperplanes in general position.
J. Fac. Sci. Univ. Tokyo 22 (1975), 205–219. MR0379883

42. A. Hattori, Isoukikagaku (Topology, in Japanese), Iwanami Kiso Sugaku Sensho, Iwanami,

1991.
43. M. Jambu, H. Terao, Arrangements of hyperplanes and broken circuits. Singularities (Iowa

City, IA, 1986), 147–162, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989.
MR1000599

44. M. Kita, M. Noumi, On the structure of cohomology groups attached to the integral of certain
many-valued analytic functions. Japan. J. Math. (N.S.) 9 (1983), no. 1, 113-157. MR722538

45. T. Kohno, Homology of a local system on the complement of hyperplanes. Proc. Japan Acad.
Ser. A Math. Sci. 62 (1986), 144-147. MR846350

46. B. Kostant, The Principal three-dimensional subgroup and the Betti numbers of a complex
simple Lie group. Amer. J. Math., 81 (1959), 973–1032. MR0114875

http://www.ams.org/mathscinet-getitem?mr=647485
http://www.ams.org/mathscinet-getitem?mr=0072877
http://www.ams.org/mathscinet-getitem?mr=1475166
http://www.ams.org/mathscinet-getitem?mr=1612383
http://www.ams.org/mathscinet-getitem?mr=2038782
http://www.ams.org/mathscinet-getitem?mr=0417174
http://www.ams.org/mathscinet-getitem?mr=0422673
http://www.ams.org/mathscinet-getitem?mr=2427459
http://www.ams.org/mathscinet-getitem?mr=1452427
http://www.ams.org/mathscinet-getitem?mr=1134624
http://www.ams.org/mathscinet-getitem?mr=1380397
http://www.ams.org/mathscinet-getitem?mr=563404
http://www.ams.org/mathscinet-getitem?mr=1213111
http://www.ams.org/mathscinet-getitem?mr=0141126
http://www.ams.org/mathscinet-getitem?mr=1193601
http://www.ams.org/mathscinet-getitem?mr=1401770
http://www.ams.org/mathscinet-getitem?mr=2908622
http://www.ams.org/mathscinet-getitem?mr=0379883
http://www.ams.org/mathscinet-getitem?mr=1000599
http://www.ams.org/mathscinet-getitem?mr=722538
http://www.ams.org/mathscinet-getitem?mr=846350
http://www.ams.org/mathscinet-getitem?mr=0114875


66 HIROAKI TERAO AND MASAHIKO YOSHINAGA

47. J. P. S. Kung, A geometric cndition for a hyperplane arrangement to be free. Adv. Math. 135
(1998) 303-329.
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