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GEODESIC FLOWS ON NEGATIVELY CURVED MANIFOLDS

AND THE SEMI-CLASSICAL ZETA FUNCTION

MASATO TSUJII

Abstract. In this article, we report some recent advances in the study of
spectral properties of transfer operators for geodesic flows on negatively curved
manifolds. We first review related studies, explaining important concepts and
introduce basic definitions. We then discuss recent results on spectral proper-
ties of the (generator of) transfer operators and also related analytic properties
of dynamical zeta functions.

1. Introduction

The geodesic flow is a flow that describes the motion of a free particle on a Rie-
mann manifold (M, ‖ ·‖). It is known that the dynamical properties of the geodesic
flow depends much on the curvature of the manifold M . If the (sectional) curvature
of M is negative everywhere, the flow is unstable in the sense that the orbits depend
on their initial conditions sensitively. Indeed the geodesic flows on negatively curved
manifolds is known as types of hyperbolic flows and exhibit diverse and complex
behavior of the orbits, which is called “Chaos”. On the other hand, the unstable
property of the flow takes effect as “diffusion” on the orbits and, as a consequence,
the statistical properties of the orbits become stable and observable. Statistical
properties of the orbits of dynamical systems have been studied extensively in the
field of ergodic theory and the geodesic flows on negatively curved manifolds have
been one of the prominent examples since the work [1] of Hadamard in the late
nineteenth century.

Figure 1. The geodesic flow on a surface.

The natural action of a flow on functions on the phase space and its variants
are called transfer operators and are useful when we study the statistical properties
of dynamical systems. For geodesic flows on negatively curved manifolds (or more
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general hyperbolic flows), recent studies have revealed that, if we consider the one-
parameter group of transfer operators on some appropriate function spaces, the
action is strongly continuous and, rather surprisingly, the generator has discrete
spectrum. If we call the eigenvalues of the Laplacian on M “quantum mechanical
spectrum of M”, we may call the eigenvalues in such discrete spectrum “classical
mechanical spectrum of M” in contrast. The main theorem (Theorem 5.1) pre-
sented in this article states that the discrete spectrum of the generator of transfer
operators has “band structure”. This is obtained in the author’s joint work with
Frédéric Faure at the Fourier Institute (Grenoble, France).

It is usually not possible to define the trace of transfer operators in the standard
manner. But the Atiyah-Bott(-Guillemin) trace, which is defined as the integration
of the Schwartz kernel of the operator on the diagonal, is well-defined for transfer
operators under a mild condition on the flow and given as a weighted sum on
the periodic orbits. Hence, having in mind the expression of the trace as the
sum of eigenvalues, we are lead to the idea that the spectral properties of transfer
operators dominate asymptotic distribution of periods of periodic orbits. This is a
classical idea behind the dynamical zeta functions and enables us to deduce a result
(Theorem 6.6) on the “semi-classical” (or “Gutzwiller-Voros”) zeta function from
the “band structure” of the spectrum.

In what follows, we first overview the ergodic properties of geodesic flows on
negatively curved manifolds and then present some of the more recent results. The
author attempts to present not only the results but the ideas behind the proofs
and the difficulties that prevent further developments. But this seems beyond his
ability and we are afraid that the readers may find some parts of the explanation
not clear. We ask the readers to skip such parts.

2. Geodesic flows on negatively curved manifolds

2.1. Geodesic flows. The geodesic flow of a Riemann manifold (M, ‖·‖) describes
the motion of a free particle on M . Suppose that a particle is now at a point x ∈ M
on a Riemann manifold and has velocity v ∈ TxM as illustrated in Figure 1. Then
the particle will move along the geodesic that is tangent to v ∈ TxM and proceeds
t × ‖v‖ in length by time t. Since the norm ‖v‖ of the initial velocity affects only
the speed of time evolution, we will suppose that ‖v‖ = 1. Hence the phase space
of the geodesic flow is the set of pairs of a point x ∈ M and a unit tangent vector
v ∈ TxM at x, that is, the unit tangent bundle T1M = {v ∈ TM | ‖v‖ = 1}. The
geodesic flow of M is the flow on T1M :

(2.1) f t : T1M → T1M.

We can present the geodesic flow as a Hamiltonian flow. We consider a Hamil-
tonian function H(x, ξ) = ‖ξ‖2/2 on the cotangent bundle T ∗M , which corre-
sponds to the kinetic energy of the particle. We consider local coordinates x =
(x1, x2, . . . , xm) with m = dimM on M and suppose that the pair (x, ξ) with the
dual coordinates ξ = (ξ1, ξ2, . . . , ξm) is a local chart on the cotangent bundle T ∗M .
Then the Hamiltonian flow for the Hamilton function H(x, ξ) is the flow generated
by the ordinary differential equations

ẋi =
∂H

∂ξi
, ξ̇i = −∂H

∂xi
, i = 1, 2, . . . ,m
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in such local coordinates. If we restrict such flow to the unit cotangent bundle
T ∗
1M , given by the equation H ≡ 1/2, we obtain a flow

(2.2) f t : T ∗
1M → T ∗

1M.

This flow is equivalent to the geodesic flow in the sense that (2.1) and (2.2) are the
same if we identify the unit tangent bundle T1M and the unit cotangent bundle
T ∗
1M in the standard manner by using the Riemann metric.

2.2. Curvature and exponential instability. Dynamical properties of the geo-
desic flow depends much on the curvature of the manifold. If the sectional curvature
of the manifold is negative everywhere, the geodesic flow has exponential instability,
that is, the distances between nearby orbits grow exponentially fast. The next def-
inition abstracts a geometric property of the geodesic flows on a negatively curved
manifold, which leads to exponential instability.

Definition 2.1 (Anosov flow). A flow f t : N → N on a closed manifold N is
called an Anosov flow if there exists a Df t-invariant continuous decomposition of
the tangent bundle TN ,

(2.3) TN = 〈V 〉 ⊕ Es ⊕ Eu

such that

(1) 〈V 〉 is the one-dimensional subbundle spanned by the generating vector
field V of the flow. (Especially the vector field V is non-singular.

(2) The action of the differential Df t on Es (resp. Eu) is exponentially con-
tracting (resp. expanding), that is, there exist some constants χ0 > 0 and
C ≥ 1 such that, the following holds for t ≥ 0:

‖Df t(v)‖ ≤ C exp(−χ0t)‖v‖ (∀v ∈ Es),

resp. ‖Df t(v)‖ ≥ C−1 exp(+χ0t)‖v‖ (∀v ∈ Eu).

Lemma 2.2 (Anosov [2]). The geodesic flow on a closed negatively curved manifold
is an Anosov flow.

The subbundles Es and Eu are unique for an Anosov flow f t and called the
stable and unstable subbundle. From the stable manifold theorem, the subbundle
Es (resp. Eu) is integrable and the integral manifold W s(p) (resp. W s(p)) passing
through p ∈ N is called the stable manifold (resp. unstable manifold) of p. The
stable and unstable manifolds are characterized as

W s(p) = {q ∈ N | d(f t(q), f t(p)) → 0 (t → +∞)},
Wu(p) = {q ∈ N | d(f t(q), f t(p)) → 0 (t → −∞)}.

The foliation that the stable (resp. unstable) manifolds Fs (resp. Fu) constitute
is called the stable (resp. unstable) foliation.

Remark 2.3. Beware that the stable and unstable subbundles are not smooth, that
is, the subspaces Es(p) and Eu(p) do not depend on p smoothly and the dependence
is only Hölder continuous in general. This is the case even if we assume that the
flow is real-analytic. We cannot expect more smoothness than Hölder continuous
if we do not put strong conditions on symmetry of the system1.

1See [3, 4]. The Hölder exponent of Es(p) and Eu(p) depend on some dynamical exponents of
the flow. See [5, Appendix A] and the references therein.
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2.3. Contact Flow. The geodesic flow on a negatively curved manifold has an
important geometric property other than it is an Anosov flow: It preserves a dif-
ferential one-form called contact form on the phase space.

Definition 2.4 (Contact flow). Suppose that a closed manifold N is of odd dimen-
sion and dimN = 2d+ 1 for some integer d ≥ 1.

(1) A differential one-form α on N is said to be a contact form if it satisfies the
condition

(2.4) α ∧ (dα)d(p) �= 0 (∀p ∈ N)

called the “complete non-integrability condition2”. The (2d+ 1)-form α ∧ (dα)d is
a volume form and called the Liouville volume.

(2) A flow f t : N → N is said to be a contact flow if it preserves a contact form
α on N . (Consequently a contact flow f t preserves the Liouville volume α∧ (dα)d.)

On the cotangent bundle T ∗M , we can define a differential one-form η, called
the canonical one-form, by

η(v) = ξ(Dπ(v)) for v ∈ T(x,ξ)(T
∗M),

where π : T ∗M → M is the projection. For the geodesic flow, regarded as a flow
on the unit cotangent bundle T ∗

1M as in (2.2), we have the following.

Lemma 2.5. The canonical one-form η restricted to the unit cotangent bundle
T ∗
1M , α := η|T∗

1 M , is a contact form. The geodesic flow f t : T ∗
1M → T ∗

1M is a
contact flow that preserves this contact form α.

From Lemma 2.2 and Lemma 2.5, the geodesic flow on a negatively curved
manifold is an Anosov flow and a contact flow simultaneously, that is, a contact
Anosov flow.

Remark 2.6. For a geodesic flow, the generating vector field V satisfies α(V ) ≡ 1
for the contact form α given in Lemma 2.5. For a general contact Anosov flow,
α(V ) is a non-zero constant3. Below we may and do suppose that α(V ) ≡ 1 by
multiplying α by a constant.

For a contact Anosov flow, it is not difficult to see the following fact if we note
that the flow f t preserves the contact form α while the vectors in Es and Eu are
exponentially contracted and expended, respectively, and also that dα restricted to
kerα = Es ⊕ Eu is a symplectic form preserved by the flow.

Lemma 2.7. For a contact Anosov flow f t : (N,α) �, we have

kerα = Es ⊕ Eu, dimEs = dimEu = dimkerα/2 = (dimN − 1)/2 = d.

We are going to explain that the stable and unstable foliation for a contact
Anosov flow satisfies a “non-integrability” condition. For facility of explanation, we
suppose dimN = 3, dimEs = dimEu = 1, and consider (in a flow box) coordinates.
We draw a piecewise smooth curve γ = γ1 + γ2 + γ3 + γ4 in N , as illustrated in
Figure 2, so that:

2This implies that the restriction of dα to kerα is non-degenerate (as a bilinear form). This is
opposite to the situation where kerα is integrable (i.e. the restriction of dα to kerα vanishes).

3Since α(V ) is invariant with respect to the flow, it is a constant from Theorem 3.1 and
non-zero from Lemma 2.7.
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• each of the curves γ1 and γ3 is contained in an unstable manifold, while
each of the curves γ2 and γ4 is contained in a stable manifold, and

• the projection of γ along the flow is a closed curve that bounds a region R.

Then, the end points of the curve γ are on an orbit of the flow and the time T to
move one to another by the flow is given as the integral

T =

∫
R

dα.

This does not vanish provided that the region R has positive area. Hence, though
the distributions Es and Eu are integrable, the sum Es⊕Eu are far from integrable.
In other words, the stable foliation Fs and the unstable foliation Fu are “jointly”
non-integrable.

B C

A

A′

D
T

R

γ1
γ2

γ3

γ4

W s

W s

WuWu

Flow direction

Figure 2. Non-integrability of the stable and unstable foliation.

3. Ergodic properties and decay of correlation

Ergodic theory studies statistical properties of the orbits of dynamical systems.
Though its scopes and applications are diverse, we restrict ourselves here to the
case of geodesic flows on a negatively curved manifolds. For simplicity, we write
N = T ∗

1M and denote the geodesic flow as f t : N → N . The contact form on
N = T ∗

1M (given as the restriction of the canonical one-form) is written α. Let μ
denote the Liouville measure normalized so that μ(N) = 1.

3.1. Ergodicity. We regard a function ψ : N → R as an observable. Its time
evolution is given by the family

(3.1) ψ ◦ f t(x) = ψ(f t(x)) (−∞ < t < +∞).

A standpoint of ergodic theory is that we regard (3.1) as a one-parameter family
of random variable on the probability space (N,μ) and apply probability theory to
it. To this end, we first have to check that the system is ergodic.
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Theorem 3.1 (Hopf [6], Anosov [2]). If an Anosov flow f t : N → N on a closed
manifold N preserves a smooth volume μ on N such that μ(N) = 1, it is ergodic
with respect to μ, that is, for any L1 function ψ ∈ L1(N,μ), the time average

ψ(x) = lim
T→∞

1

T

∫ T

0

ψ(f t(x))dt

exists and coincides with the space average
∫
ψ dμ at μ-almost every point x ∈ N . In

particular, the geodesic flow on a negatively curved manifold is ergodic with respect
to the Liouville measure.

The idea of the proof is not difficult and given by the following argument, called
the Hopf argument. (But see the remark below. )

(1) From Birkhoff ergodic theorem [7] the time average ψ(x) exists and coin-
cides with the limit for T → −∞ at μ-a.e. x ∈ N .

(2) The time average ψ(x) takes a constant value on each of the stable manifolds
because the points on a stable manifold become close to each other as T
gets large. Since ψ(x) coincides with the limit for T → −∞, it also takes
a constant value on each of the unstable manifolds (if we ignore the sets of
the measure zero with respect to μ).

(3) The time average ψ(x) also takes a constant value for points on each orbit.
(4) Any two points in N are connected by a piecewise smooth curve that is

obtained by connecting curves each of which is contained in a stable mani-
fold, an unstable manifold or an orbit. Therefore, by (2) and (3), the time
average ψ(x) takes a constant value at almost every point x ∈ N .

Remark 3.2. The explanation above is simplistic actually. To justify the argument
above, we need a basic property of the stable (unstable) foliation, that is, absolute
continuity of the homonomy map. Hopf was able to prove Theorem 3.1 in the case
of geodesic flows on surfaces because the homonomy map of the stable (unstable)
foliation is C1 in such case. But, for the higher dimensional case, it remained open
until the work of Anosov [2] in which the homonomy map is proved to be absolutely
continuous (though it is only Hölder continuous in general). See, for example, [7,
Ch.3].

3.2. Mixing and decay of correlation. Once we established ergodicity, we next
consider the correlations between the “random variables” (3.1). If the correlation
between ψ ◦ f t and ψ ◦ fs decay fast as |t − s| gets large, we may regard that the
random variables (3.1) are almost independent of each other and expect that some
limit laws, such as the central limit theorems, hold true. If the correlation decays
only slowly, we observe deterministic properties of the dynamical system in such
slow decay.

For functions ϕ, ψ ∈ L2(N,μ) and t ≥ 0, we define4

Cor(ϕ, ψ; t) =

∫
ϕ · (ψ ◦ f t)dμ−

∫
ϕdμ ·

∫
ψdμ

=

∫
(ϕ ◦ f−t) · ψdμ−

∫
ϕdμ ·

∫
ψdμ.(3.2)

4The second equality follows from the fact that μ is f t invariant.
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Then the correlation between ψ ◦ f t and ψ ◦ fs with t > s is given by

Cor(ψ, ψ; t− s) =

∫
(ψ ◦ f t) · (ψ ◦ fs)dμ−

(∫
ψdμ

)2

.

We consider how fast the correlation Cor(ϕ, ψ; t) decays as t → ∞. The next
theorem due to Sinai is fundamental.

Theorem 3.3 (Sinai [8, 9]). The geodesic flow f t : N → N on a negatively curved
manifold is mixing. That is, for any L2 functions ϕ, ψ ∈ L2(N,μ), we have

(3.3) lim
t→∞

Cor(ϕ, ψ; t) = 0.

Here we used the word “mixing” because, if we let ψ and ϕ be the indicator
functions of Borel measurable subsets A and B, respectively, and suppose μ(A) > 0,
the condition (3.3) implies

(3.4) lim
t→∞

μ(A ∩ f t(B))

μ(A)
= μ(B),

that is, the image f t(B) becomes homogeneous in N as t → ∞.
In Theorem 3.3, we have to use the fact that the geodesic flow is not only an

Anosov flow but also a contact flow (or some other general condition on joint non-
integrability of the stable and unstable foliations). Indeed the next example shows
that, if we only assume that the flow is an Anosov flow preserving a smooth volume,
the conclusion of the theorem is not true in general.

Example 3.4. From the Arnold’s cat map

f

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
: R2/Z2 → R

2/Z2

we construct the mapping torus Xf = R
2/Z2× [0, 1]/(x, 1) ∼ (f(x), 0) and consider

the suspension flow (with a constant roof function)

f t : Xf → Xf , f t(x, s) = (x, s+ t).

This is obviously an Anosov flow preserving the volume, but (3.4) does not hold
for A = B = R2/Z2 × [0, 1/2].

As we noted in the last paragraph of Section 2, the situation in the case of
geodesic flows (or contact Anosov flows) is opposite to that in the example above.5

3.3. Exponential decay of correlation. Though the mixing property given in
Theorem 3.3 is fundamental, for the purpose of applying the argument in probability
theory to the random variables (3.1), we need some more quantitative estimates on
the rate of decay in (3.3). Below we discuss such quantitative estimates. Note that,
if we only assume that the functions ϕ and ψ are L2 functions, it is not possible
to get an appropriate quantitative estimate on Cor(ϕ, ψ; t), as is known even for
much simpler cases of discrete dynamical systems. Below we assume that ϕ and ψ
are C∞ functions for simplicity.

Even under such additional assumptions on functions ϕ and ψ, the quantitative
estimate for the decay rate in (3.3) was a difficult problem. (This is in contrast

5Mixing property holds true under a much more general assumption than contact Anosov flows.
For Anosov flows preserving a smooth volume, they are not mixing only if it is conjugated to the
suspension flow of an Anosov diffeomorphism with a constant roof function [10].
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to the case of discrete hyperbolic dynamical systems where the exponential decay
rate was obtained rather easily.) In the case of geodesic flow on surfaces with
negative constant curvature, Ratner [11] and Moore [12] proved exponential decay
of correlations using a method from representation theory6. But there had not
been much progress for more general cases, until a breakthrough was made by
Chernov and Dolgopyat in the late 1990’s. Chernov [13] proved that the decay

rate is bounded by a stretched exponential rate O(e−c
√
t) by using a method called

Markov approximation. Then Dolgopyat [14] was succeeded to prove that the decay
rate is actually exponential right after the work of Chernov.

Theorem 3.5 (Dolgopyat, Liverani [5]). The geodesic flow on a negatively curved
manifold exhibits exponential decay of correlation. That is, there exists some con-
stant ε > 0 such that, for any C∞ functions ϕ and ψ, we have

|Cor(ϕ, ψ; t)| ≤ Ce−εt (∀t ≥ 0),

where C is a constant depending on ψ and ϕ.

Remark 3.6. Dolgopyat proved the theorem above for the case of geodesic flows on
surfaces (but under weaker assumptions on differentiability of ψ and ϕ). Liverani [5]
extended the result to general contact Anosov flows, by using a functional analytic
method, invented by him, together with the argument by Dolgopyat.

Theorem 3.5 is one of the landmarks of ergodic theory in 1990’s. The argument
used in the proof is called Dolgopyat argument and extended to many directions
later. The basic idea of the argument is not very difficult as we sketch below. But,
because the (un)stable foliation is not smooth, one need to overcome some technical
difficulties. This is indeed a great achievement obtained only by the outstanding
ability of Dolgopyat (and Chernov, Liverani) in analysis.

The idea behind the proof of Theorem 3.5 (to the understanding of the author)
is sketched roughly as follows.

(1) We regard the definition (3.2) of Cor(ϕ, ψ; t) as the value that the distribu-
tion ϕ ◦ f−t takes against a smooth function ψ. From this viewpoint, the
problem is the decay of ϕ ◦ f−t as a distribution.

(2) Since flow f t is a translation in the flow direction (at least if we look them
in the flow box coordinates), it virtually preserves the Fourier components
of the functions in the flow direction. Hence we decompose functions on N
with respect to the frequency in the flow diction and consider the action
of the flow on each of the components. (We focus on the high frequency
components because the low frequency components can be treated in the
same manner as the case of discrete dynamical systems.)

(3) Since the flow f t is exponentially expanding in on the unstable manifolds,
we may suppose that the function ϕ◦f−t for large t > 0 is virtually constant
on each of the unstable manifolds.

(4) We apply the operation of “averaging the function ϕ ◦ f−t along the stable
manifolds”. For instance, if the function ϕ ◦ f−t takes values a1, a2 at two
nearby points p1, p2 on a stable manifold W s(p), we replace those values by
the average (a1 + a2)/2. This operation changes the value of Cor(ϕ, ψ; t),

6In this case, the unit tangent bundle T1M of M is identified with a quotient space of SL(2,R)
with respect to a discrete subgroup and the geodesic flow may be regarded as a part of the action
of SL(2,R) on it. From this fact, we can make use of the theory on the representations of SL(2,R).
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W s
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Flow direction

Figure 3. Averaging along stable manifolds and non-integrability.

but the difference (as a distribution) will decay exponentially fast by the
time evolution afterward because the flow is exponentially contracting along
the stable manifolds. Hence such differences will not affect the proof of
exponential decay of correlation. (We ignore such differences.)

(5) At each of certain time intervals, we apply the operation of averaging as
above and show that the operation reduce ϕ◦f−t at a small but fixed rate.
For this, we use the joint non-integrability of the stable and unstable folia-
tion, explained in Section 3. Consider the situation illustrated in Figure 2.
If the averaging does not take effect at the points B and C on the front
side (unfortunately), we can find, by virtue of the joint non-integrability,
another pair of points A′ and D at which the averaging takes effect. (See
Figure 3 and compare it with Figure 2.) Hence the function ϕ ◦ f−t decays
at a certain rate at each time interval by the operation of averaging.

As we are showing a quantitative estimate, the explanation above is of course not
sufficient. But we stress that the operation of “averaging along the stable manifolds”
yields the exponential decay of correlation. A motivation of the author’s study
explained in the next section is to put this argument into a framework of functional
analysis.

4. Spectral gap

4.1. Spectral gap and exponential decay of correlation. We consider the
transfer operator Lt : C∞(N) → C∞(N) defined by

Ltu(z) = u ◦ f−t(z).

Then we may write the correlation Cor(ϕ, ψ; t) as

Cor(ϕ, ψ; t) = 〈Lt(ϕ−Π0(ϕ)), ψ −Π0(ψ)〉,
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where Π0 is the rank one projection operator that carries a function to a constant
function taking the value of its average. (The operator Π0 commutes with Lt.)
Here the bracket 〈·, ·〉 on the right hand side denotes the pairing of a distribution
on the left with a function on the right.

We will take a Hilbert spaceH of distributions such that C∞(N) ⊂ H ⊂ C∞(N)′

and that the action of the transfer operators Lt on it is bounded. The essential
spectral radius of the bounded operator Lt : H → H is by definition the infimum
of the spectral radius of its perturbations by finite rank operators (or, equivalently,
by compact operators):

ρess(Lt|H) = inf{ρ((Lt −K)|H) | K : H → H is of finite rank.}

From the perturbation theory of operators, we see that the spectral set of the
operator Lt : H → H on the outside of the disk of radius ρess(Lt|H) consists of
discrete eigenvalues with finite multiplicity.

If the essential spectral radius ρess(Lt|H) is smaller than the spectral radius,
which is 1, we say that the transfer operator Lt on H is quasi-compact or has
spectral gap. If such condition is fulfilled, then we can show, by a simple argument7

using the mixing property in Theorem 3.3, that the leading eigenvalue 1 is simple
and is the only eigenvalue on the unit circle and that the other part of the spectral
set is contained in a disk {|z| < 1 − η} with η > 0. In particular, the exponential
decay of correlation in Theorem 3.5 follows immediately.

4.2. Quasi-compactness of transfer operators. It was noted (as a footnote)
in [5] that the exponential decay of correlation would be deduced from quasi-
compactness of the transfer operator on some function space. This is achieved
in the author’s results presented below. Note that the Hilbert space H in the
statement below is a generalized Sobolev space with a weight function Wr on T ∗N
adapted to the hyperbolic decomposition (2.3) and called an anisotropic Sobolev
space.

Theorem 4.1 (Tsujii [15, 16]). There exists a Hilbert space C∞(N) ⊂ H ⊂
C∞(N)′ such that the transfer operator Lt : H → H acting on H is bounded at
least for sufficiently large t > 0 and the essential spectral radius is exp(−χut/2),
where

χu = lim
t→∞

1

t
log

∥∥det(Df t|Eu
)
∥∥1/t
∞ > 0.

As illustrated in Figure 4, the spectrum of Lt : H → H on |z| > exp(−χut/2) con-
sists of discrete eigenvalues of finite multiplicity. There is only one simple eigen-
value 1 on the unit circle and the rest of the spectral set is contained in the interior
of the unit disk.

As we have explained, Theorem 4.1 implies exponential decay of correlation in
Theorem 3.5. Moreover, since we now have a concrete bound on the essential
spectral radius, we can give the following asymptotic estimate on the correlation.

7Suppose that eiλt is an eigenvalue of Lt with absolute value 1 and that u ∈ H belongs to the

corresponding eigenspace S. Since the limit limT→∞ T−1
∫ T
0 e−iλtLtdt is the projection to S and

since C∞(N) in dense in H, we can find ϕ ∈ C∞(N) such that limT→∞ T−1
∫ T
0 e−λtLtϕdt = u.

The left hand side converges weakly in L2 for some subsequence of T (because of boundedness in
L2). Hence u ∈ L2. From the mixing property, this implies u ≡ 1 and λ = 0.
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exp(−χut/2)

The leading eigenvalue 1

Discrete eigenvalues

Im(z)

Re(z)

Figure 4. Spectrum of Lt : H → H.

Corollary 4.2. For any ε > 0, there exists complex numbers χk, 1 ≤ k ≤ 
, such
that, for sufficiently large t ≥ 0, the discrete eigenvalues of Lt : H → H on the
region |z| ≥ exp(−(χu−ε)t/2) are exp(χkt) for 1 ≤ k ≤ 
. Let mk be the maximum
of the size of the Jordan blocks of Lt for the eigenvalue exp(χkt). Then, for any
C∞ functions ϕ, ψ ∈ C∞(N), we have

Cor(ϕ, ψ; t) =
�∑

k=1

mk−1∑
m=0

Ck,m(ϕ, ψ)tmeχkt +O
(
exp(−(χu − ε)t/2)

)
,

where Ck,m(ϕ, ψ) is a constant depending on ϕ and ψ.

Remark 4.3. If we take a different Hilbert (or Banach) space in Theorem 4.1, it
may be possible to get better bound on the essential spectral radius than that in
the theorem. Indeed it is desirable that a better bound is given as a quantity such
as topological pressure for some potential. However, note that, since the bound
given in Theorem 4.1 is optimal in the case of geodesic flow on a negative constant
curvature, it is not possible to give a bound like exp(−χut) in general.8

Below we explain the idea in the proof of Theorem 4.1. The following lengthy
explanation is for the readers who are familiar with dynamical systems theory and
interested in technical matters. The readers can skip it if otherwise.

(1) We analyze the transfer operators Lt regarding them as Fourier integral
operators. That is, we decompose each function u on N into “wave packets” and
consider how the wave packets are transferred by Lt. Here a “wave packet” is a
function which is localized in the space N and also whose Fourier transform (on
local coordinates) is localized. For instance, if we define a function φx,ξ : Rd → C

for a point (x, ξ) ∈ R2d = T ∗Rd and � > 0 by

φx,ξ(y) = exp(iξ · (y − x)− |y − x|2/�)

8This is in contrast to the situation for Anosov diffeomorphism in [17, 19], where we can take
Hilbert spaces on which the action of the transfer operator has arbitrarily small essential spectral
radius.
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in local coordinates, it is a wave packet localized in the �1/2-neighborhood of the
point x and its Fourier transform is localized around the �−1/2-neighborhood of ξ
(� > 0 is a parameter that indicates the size of the wave packet). Intuitively, it is
clear that the transfer operator Lt carries a wave packet φx,ξ for (x, ξ) ∈ T ∗N to
wave packets for points around (x′, ξ′) = (Df−t)∗(x, ξ). So, for our analysis of Lt,
it is important to consider the dynamics of the map

(4.1) (Df−t)∗ : T ∗N → T ∗N,

which is called the canonical map associated to Lt regarded as a Fourier integral
operator.

(2) When we study a dynamical system by topological methods, one of the first
things to do is to identify its non-wandering set. For the dynamics of the canonical
map (Df−t)∗, the non-wandering set is the one-dimensional subbundle 〈α〉 of the
cotangent bundle T ∗N spanned by the contact form α. To see this, we first note
that, through the one-to-one correspondence (x, s) ∈ X × R �→ s · α(x) ∈ T ∗N
between X × R and 〈α〉, we can identify the flow (Df−t)∗ on 〈α〉 with f t × Id on
X × R. So 〈α〉 is contained in the non-wandering set. On the other hand, since
the flow (Df−t)∗ is hyperbolic in the normal directions to 〈α〉, the points on the
outside of 〈α〉 are not recurrent.

(3) Since the points on the outside of the non-wandering set 〈α〉 are not recurrent,
we can assign some weight to each of the corresponding wave packets so that the
action of the transfer operator Lt on such wave packets looks strongly dissipative.
More concretely, for each positive number r > 0, we take a smooth function Wr :
T ∗N → R+ so that, if (x, ξ) ∈ T ∗N is not close to 〈α〉, we have

Wr((Df−t)∗(x, ξ)) ≤ e−rχ0t · Wr(x, ξ).

Then we introduce a norm which counts the wave packet corresponding to a point
(x, ξ) ∈ T ∗N with the weight Wr(x, ξ). (Indeed the Hilbert space H in Theorem 4.1
is defined as the generalized Sobolev space with weight Wr(·).) The function Wr(·)
is constructed as follows. We consider the dual of the decomposition (2.3), T ∗N =
〈α〉 ⊕ E∗

s ⊕ E∗
u where E∗

s (resp. E∗
u) is the subbundle on which the action of

(Df−t)∗ is expanding (resp. contracting)9. Then the point in T ∗N is expressed as
sα(x) + ξs + ξu, x ∈ N , s ∈ R, (ξs, ξu) ∈ E∗

s (x)⊕ E∗
u(x)). We define

(4.2) Wr(sα(x) + ξs + ξu) =
〈
〈s〉−1/2 · ‖(ξs, ξu)‖

〉ord([(ξs,ξu)])

,

where we set 〈s〉 =
√
1 + s2 ≥ 1 and ord : P(E∗

s ⊕E∗
u) → [−r, r] is a function on the

projective bundle P(E∗
s ⊕E∗

u) such that ord([ξs, ξu]) = −r (resp. ord([ξs, ξu]) = +r)
if ‖ξs‖ ≥ 2‖ξu‖ (resp. ‖ξu‖ ≥ 2‖ξs‖).

(4) The norm introduced above allows us to focus on the action of Lt on the wave
packets corresponding to the points in (a small neighborhood of) 〈α〉. If we let Lt act
on the wave packet corresponding to a point (x, ξ) = s · α(x) ∈ 〈α〉 and decompose
the image into wave packets, we will get a set of wave packets corresponding to
points near the point (Df−t)∗(x, ξ) ∈ T ∗N , but the image will spread along the
direction E∗

s . This operation is unitary if we consider it with respect to the usual
L2 norm. But it is contracting with respect to the norm introduced above because
the wave packets are counted with the weight function Wr(x, ξ) which takes small

9The notation E∗
s for the expanding direction may be misleading. For the latter argument, we

would like to take E∗
s as the dual space of Es.
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values at the points far from 〈α〉 in the direction of E∗
s . Indeed we can see that

the norm is contracted by the rate | det(Df t|Eu
)|−1/2 � exp(−χut/2). This rate

appears as the bound on the essential spectral radius in Theorem 4.1. But notice
that this is not the end of the argument. (In fact, we have not used the non-
integrability of α!)

(5) The last important problem is that, if several wave packets, which are placed
mutually in the stable direction, are transferred by Lt with large t > 0, the im-
age will come very close to each other and hence the norm may increase by the
interference between them. Indeed, if we did not have the joint non-integrability
condition of the stable and unstable foliation, the effect of the interference might
compensate the the contraction given in (4) above. (This in fact happens in the
case of Example 3.4.) The complete non-integrability of the contact form α implies
that such an increase of the norm by interference will not occur. In fact, since the
non-integrability condition implies that the direction of α is “twisted” along stable
manifolds and hence there is some difference of the frequency vectors corresponding
to the images of the wave packets, then the images are virtually orthogonal to each
other. With this, we conclude that the operator norm of the transfer operator Lt on
H is bounded by the rate exp(−χut/2) if we ignore its action on the low frequency
part of the functions, which is compact.

We have to say that the explanation above is (again) not very precise and ignores
some technical details. But we would like to emphasize that the mechanism of
cancellation by “averaging along the stable manifolds”, explained after Theorem 3.5
in Subsection 3.3, is replaced by the orthogonality between the image of the wave
packets explained in (5) above.

Remark 4.4. For the parallel results for discrete hyperbolic dynamical systems,
such as Anosov diffeomorphisms, we refer to [17, 18, 19, 20, 21].

5. Semiclassical analysis of transfer operators

We continue discussing the spectrum of transfer operators for the geodesic flow
f t : N = T ∗

1M � on a closed Riemann manifold M . In the following, we present
the results of the author’s joint work with F. Faure [22].

Generalizing the definition of the transfer operator in the last section slightly,
we consider the transfer operators of the form

(5.1) Ltu(x) = (gt · u)(f−t(x)),

where gt(x) is a one-parameter family of functions on N satisfying the cocycle
condition

gt+s(x) = gt(fs(x)) · gs(x),
which is necessary for the family Lt to be a one-parameter group.

The next theorem shows that the generator of a one-parameter group of transfer
operators Lt as above has discrete spectrum and, further, the discrete spectrum

has a “band structure” parallel to the imaginary axis. The Hilbert space H̃r in the
statement is essentially same as H in Theorem 4.1, but modified slightly so that Lt

for small t ≥ 0 is bounded on H̃r.

Theorem 5.1 (Faure-Tsujii [22]). For any r > 0, there exists a Hilbert space

C∞(N) ⊂ H̃r ⊂ C∞(N)′ such that Lt : H̃r → H̃r for t ≥ 0 is a strongly continuous
one-parameter family of bounded operators and the spectrum of its generator A in
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the region Re(s) > −rχ0 consists of discrete eigenvalues with finite multiplicity,
where χ0 > 0 is the constant in Definition 2.1 of Anosov flow. For any ε > 0,
the discrete spectrum of A is contained in the ε-neighborhood of the union of zonal
regions

B =
∞⋃
k=0

Bk, Bk = {z ∈ C | γ−
k ≤ Re (z) ≤ γ+

k },

but for finitely many exceptions (depending on ε), where

γ−
k := lim

t→∞

1

t
log min

x∈N

(
|gt(x)| · (det |(Df t|Eu

)(x)|)−1/2 · ‖Df t|Eu
‖−k
max

)
≤ γ+

k := lim
t→∞

1

t
logmax

x∈N

(
|gt(x)| · det |(Df t|Eu

)(x)|−1/2 · ‖Df t|Eu
‖−k
min

)
(See Figure 5. ‖L‖max and ‖L‖min denotes the maximum and minimum singular
values of a linear map L.)

γ−
0 γ+

0γ+
1γ−

1γ+
2 Re(s)

B0B1B2B3

Figure 5. Spectrum of the generator of Lt.

Remark 5.2. The discrete eigenvalues of the generator A given in Theorem 5.1
above are intrinsic to the one-parameter (semi-)group Lt and does not depend on
the function space (under a very mild condition). In particular, if we let r > 0 be
larger in Theorem 5.1, we observe discrete spectrum of the generator A in a larger
region, but those in the region for the original r will not change.

In general, the zonal regions Bk, k = 0, 1, 2, . . ., may overlap each other especially
for large k ≥ 0. In some cases, the region B may coincide with the half plane
Re(s) ≤ γ+

0 and the “band structure” is vacuous in such cases. But we observe
several bands Bk disjoint from the others in the following cases:

(a) If the (sectional) curvature of the manifold M is close to constant and if
the cocycle gt(x) is also, the bounds γ+

k and γ−
k are close to each other and
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each zonal region Bk is narrow. In this case, the zonal regions Bk with
small k will be disjoint from the others.

(b) If the cocycle gt is close to gt0(x) = (det |(Df t|Eu
)(x)|)1/2, the bounds γ+

0

and γ−
0 are close to 0. So B0 is a small neighborhood of the imaginary

axis and disjoint from the other zonal regions Bk with k > 0 because
γ+
1 ≤ −χ0 < 0.

Theorem 5.3 (Faure-Tsujii [22]). (Continued from Theorem 5.1.) If the zonal re-
gion B0 is disjoint from the other zonal regions Bk, k = 1, 2, . . . , there are infinitely
many eigenvalues of the generator A in B0. Further, we have that

(1) (An analogy of the Weyl law) For any δ > 0, there is a constant C > 1
such that, if |ν| is sufficiently large, we have

C−1νd ≤ #{eigenvalues of A in [r−0 − ε, r+0 + ε]× i[ν, ν + |ν|δ]}
|ν|δ ≤ Cνd.

(2) (Concentration of eigenvalues along a line parallel to the imaginary axis)
In the limit Im(s) → ±∞, most of the eigenvalues in the region B0 are
contained in a small neighborhood of the line

Re(s) = γ̄0 := (1/t)

∫
log(|gt| · | det(df t|Eu

)|−1/2)dμ ∈ [γ−
0 , γ+

0 ].

(Note that γ̄0 does not depend on t > 0.) More precisely, for any 0 < ε′ < ε,
the ratio

#{eigenvalues of A in ([γ−
0 − ε, γ+

0 + ε] \ [γ̄0 − ε′, γ̄0 + ε′])× i[ν − 1, ν + 1]}
|ν|d

tends to 0 as ν → ±∞.

Remark 5.4. In the claims of Theorem 5.1 and Theorem 5.3, the following points
are not very satisfactory, but technical difficulties prevent us from improving them.

(1) We expect that the bounds for the sides of the zonal regions Bk will be
improved. In the definition of γ±

k , we take the maximum (or minimum)
over the points x ∈ N , but it will be much better if we can replace it by
some average on x ∈ N and γ±

k is given as a quantity such as topological
pressure for some potential.

(2) In Theorem 5.3, we assumed that B0 is separated from other Bk with k ≥ 1.
But this assumption will not be necessary.

(3) It will be possible to prove the analogue (1) of the Weyl law for δ = 0.
(4) In the proof of Theorem 5.1, we construct the spectral projection operator

Πk for the spectral set in Bk from the corresponding projection operator
on local charts. But we expect that the spectral projection operators Πk

can be constructed directly by a more global and geometric manner.

The proof of Theorem 5.1 and Theorem 5.3 is obtained as an extension of the
argument in that of Theorem 4.1, but we use a much more refined argument using
the method of semi-classical analysis. (Below we suppose gt ≡ 1 for simplicity
for a while.) As explained in the last section, in the proof of Theorem 4.1, the
dynamical properties of the flow of the canonical maps, (Df−t)∗ : T ∗N → T ∗N ,
around the non-wandering set 〈α〉 ⊂ T ∗N played the key roles. In particular, we
used the non-integrability of the contact form in the last step. The point of the
proofs of Theorem 5.1 and Theorem 5.3 is to interpret the non-integrability (2.4)
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of the contact form α as the fact that10 the non-wandering set 〈α〉 ⊂ T ∗N is a
symplectic submanifold of T ∗N (except for the zero section). From this, we see
that the tangent space Tq(T

∗N) at q ∈ 〈α〉 is decomposed as the direct sum of the
tangent space Tq〈α〉 of 〈α〉 and its symplectic orthogonal (Tq〈α〉)⊥:

(5.2) TqN = Tq〈α〉 ⊕ (Tq〈α〉)⊥.
Since (Df−t)∗ preserves the symplectic structure on T ∗N , it preserves also the
decomposition (5.2). This implies that the transfer operator Lt is decomposed
(micro-)locally as11

Lt = Lt
‖ ⊗ Lt

⊥,

where the operators Lt
‖ and Lt

⊥ describe the action of Lt on wave packets in the

direction along Tq〈α〉 and those along (Tq〈α〉)⊥, respectively (locally around q ∈
〈α〉). They are unitary operators if we view them in the L2 norm. But the canonical
map corresponding to the latter Lt

⊥ is the restriction of (Df−t)∗ to the subspace
(Tq〈α〉)⊥ normal to 〈α〉 and it is therefore dissipating if we view it with respect to
the weight function Wr(·). By a little more precise consideration, we see that Lt

⊥
is equivalent to the L2 normalized transfer operator

Lt : L2(Rd) → L2(Rd), Ltu(x) = | detAt|−1/2 · u((At)−1x)

associated to an expanding map At corresponding to Df t|Eu
. Since we consider the

weight Wr(·), we focus on the action of Lt on the wave packets that correspond to
a neighborhood of the origin (0, 0) in T ∗Rd. Roughly, this implies that we consider
the action of Lt restricted on a smooth function supported on a neighborhood of the
origin. If we consider the Taylor expansion of functions at the origin 0, we see that
the principal part of the action of Lt is that on the low order polynomials. Since
the transfer operator Lt preserves the space of homogeneous polynomials of each
order, we may restrict Lt to each of those subspaces of homogeneous polynomials.
But the action of Lt is obviously more contracting on the spaces of homogeneous
polynomials of higher order. This is the origin of the “band structure” given in
Theorem 5.1. Indeed the action of Lt on the space of homogeneous polynomial of
order k is related to the spectral restriction of Lt to the k-th zonal region Bk.

6. The semi-classical (Gutzwiller-Voros) zeta function

In this section, we give a result on the distribution of zeros of the semi-classical
(Gutzwiller-Voros) zeta function. We first explain about Atiyah-Bott trace formula
and the dynamical zeta function. Then we will discuss the semi-classical zeta
function.

6.1. Atiyah-Bott trace formula. The Atiyah-Bott trace formula for the transfer
operator Lt defined in (5.1) reads

(6.1) Tr�Lt :=

∫
K(x, x; t)dx =

∑
γ∈Γ

∞∑
m=1

|γ| · gm|γ|(pγ)

| det(1−Dm
γ )| · δ(t−m|γ|),

10This idea is due to F. Faure, from whom the author learn much about semi-classical analysis
and related subjects.

11This decomposition is realized exactly for the linear setting; see [23, §4]. In the non-linear
setting, the decomposition is realized only locally and approximately.
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where Γ is the set of prime periodic orbit, |γ| denotes the prime period of γ ∈ Γ,
Dγ denotes the derivative of Poincaré map along γ ∈ Γ and pγ is a point on γ. The
left equality := is the definition of the Atiyah-Bott trace (or the flat trace), which
is defined as the integration of the Schwartz kernel of Lt,

K(x, y; t) = gt(y) · δ0(f−t(x)− y), (δ0(·) is the Dirac delta function)

on the diagonal set Δ = {(x, x) ∈ N × N | x ∈ N}. The formula above just
implies that this integral is well defined and equals the quantity on the right hand
side. If the Atiyah-Bott trace was expressed as the sum of the eigenvalues of the
operator Lt, the formula (6.1) would lead to an interesting asymptotic formula
of the (weighted) distribution of periods of the periodic orbits in terms of the
spectrum of the (generator of) transfer operators. The difficulty in realizing this
idea is that the Atiyah-Bott trace is not the trace in the usual sense and, to resolve
it, we have to do with various technical problems. Below we will not deal with
such technical problems, but we content ourselves with some formal computations
(which is amusing) and state a few related results.

On the right hand side of the formula (6.1), the sum is taken over the periodic
orbits, but with the weight |γ| · gm|γ|(pγ) · | det(1−Dm

γ )|−1. Below we explain
that we can get a formula (6.4) which counts the periodic orbits without weight by
considering a few vector-valued transfer operators. This argument is due to Ruelle
[24]. To begin with, we consider a vector bundle π : W → N and a one-parameter
group of vector bundle maps F t : W → W which project onto the flow f t, that is,
the following diagram commutes:

W
F t

−−−−→ W

π

⏐⏐� π

⏐⏐�
N

ft

−−−−→ N.

We define a vector-valued transfer operator acting on the space of sections Γ(W )
of W by

Lt : Γ(W ) → Γ(W ), Ltu(x) = F t(u(f−t(x))).

The Atiyah-Bott trace formula (6.1) is extended to such a transfer operator as

(6.2) Tr�Lt :=

∫
TrK(x, x; t)dx =

∑
γ∈Γ

∞∑
m=1

|γ| · Tr (F t|π−1(pγ))

| det(1−Dm
γ )| · δ(t−m|γ|).

As special cases, we consider the vector bundle Wk for k = 0, 1, 2, . . . , 2d (d =
(dimN − 1)/2) defined by

Wk = {η | η is a differential k-form on N satisfying η(V ) = 0},

where V is the generating vector field of the flow f t. Then we let the vector bundle
map F t : Wk → Wk be the natural push-forward action of the flow f t. For the
corresponding vector-valued transfer operator Lt

k : Γ(Wk) → Γ(Wk), the formula
(6.2) reads

(6.3) Tr�Lt
k =

∑
γ∈Γ

∞∑
m=1

|γ| · Tr ((Dm
γ )∧k)

| det(1−Dm
γ )| · δ(t−m|γ|).
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Noting that12

| det(1−Dm
γ )| = (−1)d ·

2d∑
k=0

(−1)k · Tr ((Dm
γ )∧k),

we obtain the formula

(6.4)

2d∑
k=0

(−1)d−k · 1
t
· Tr�Lt

k =
∑
γ∈Γ

∞∑
m=1

1

m
· δ(t−m|γ|).

Note that we still have the factor 1/m on the right hand side. But this is not a
problem because our argument is not so precise. In fact, if we integrate both sides
over the interval [T, T + 1], the right hand side equals

∞∑
m=1

1

m
· �{γ ∈ Γ | |γ| ∈ [T/m, (T + 1)/m]}

but the contribution of the terms for m ≥ 2 are exponentially smaller than that of
the term for m = 1 in the limit T → ∞ (and negligible).

Now we examine each term on the left hand side of (6.4). The spectral radius of
the transfer operator Lt

k is exp(tPk) where Pk is the topological pressure

Pk := Ptop({f t}; {gtk}) = lim
T→∞

1

T
log

⎛⎝∫ T

0

∑
γ∈Γ

∞∑
m=1

exp(g
m|γ|
k (pγ)) · δ(t−m|γ|)

⎞⎠
in which pγ is a point on the periodic orbit γ and the function gtk(x) is defined by

gtk(x) = log ‖(Df t(x))∧k‖ − log | det(Df t|Eu
)(x)|.

The topological pressure Pk takes the maximum value h := htop({f t}) when k =
dimEu = d and takes smaller values for other k < d.

If the transfer operators Lt
d in the case k = dimEu = d have spectral gap (in

the sense that we explained in Section 4), that is, if the spectral set except for the
leading eigenvalue exp(ht) is contained in the disk {|z| < exp((h − ε)t)} for some
ε > 0, we expect the asymptotic estimate13

(6.5) #{γ ∈ Γ | |γ| < T} =

∫ T

+0

eht

t
dt+O

(
e(h−ε)T

)
.

Further, if we have more information on the spectral properties of the transfer
operators Lt

k, it will be possible14 to get a more precise estimate on the error term
on the right hand side similar to that in Corollary 4.2.

For the expected formula (6.5), there is a famous result by Parry and Pollicott,
called “Prime Orbit Theorem”, which holds under a much weaker assumption.

12We assume that Eu is orientable. This is true when the manifold M is orientable. If Eu is
not orientable, we have to consider the tensor product of Wk with the orientation line bundle of
Eu; see [25].

13The lower bound of the integration denoted by +0 is actually a fixed number T0. This is the
same in a few expressions below.

14In fact, there exists such an estimate by Huber [26] in the case of geodesic flows on surfaces
with negative constant curvature.
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Theorem 6.1 (Parry-Pollicott [10]). If an Axiom A flow f t : N → N is topologi-
cally weak mixing, we have

#{γ ∈ Γ | |γ| < T} ∼
∫ T

+0

eht

t
dt

(
∼ ehT

hT

)
,

where ∼ implies that the ratio between the both sides converges to 1 as T → +∞.

The assumption above holds for the geodesic flows on negatively curved mani-
folds. The estimate on the error term has been studied since the theorem above is
obtained and the following is one of the most recent results.

Theorem 6.2 (Giulietti-Liverani-Pollicott [27]). If the geodesic flow of a negatively
curved manifold M (or more generally a contact Anosov flow) f t : N → N satisfies
the following condition (1/3-bunching condition) for some t > 0,

(6.6) ‖Df t(x)|Eu
‖min > ‖Df t(x)|Eu

‖1/3max,

then the asymptotic formula (6.5) holds for some ε > 0. Especially, if the manifold
M satisfies the 1/9-pinching condition (that is, the values of the sectional curvature
are contained in [−9σ,−σ] for some σ > 0), the assumption holds true.

Remark 6.3. For the case of geodesic flows on surfaces, the dimension of Eu is 1 and
hence the assumption (6.6) holds trivially. The result above for such a case has been
proved by Pollicott and Sharp [28]. The assumption (6.6) is used to ensure that
the holonomy mapping of the stable and unstable foliation is at least (2/3)-Hölder
continuous. Recently, Stoyanov [29] announced a decisive result which claims that
the asymptotic estimate (6.5) holds for any contact Anosov flows.

6.2. Dynamical zeta function. The dynamical zeta function is an object that
is closely related to the Atiyah-Bott trace formula (6.1). For non-singular flows,
it is introduced by S. Smale [30] as a a generalization of Selberg zeta function in
terms of dynamical systems. This is a function of a complex variable s ∈ C defined
formally as

(6.7) Z(s) =

∞∏
n=1

∏
γ∈Γ

(1− e−(s+n)|γ|) =
∞∏

n=1

exp

⎛⎝−
∑
γ∈Γ

∞∑
m=1

1

n
e−(s+n)·m|γ|

⎞⎠ .

The infinite sum (and product) on the right hand side converges on the region
Re(s) > h = htop({f t}) and hence the definition above gives a holomorphic function
without zeros on such a region. Using (6.4), we can write the right hand side as

(6.8) Z(s) =
∞∏

n=1

2d∏
k=0

exp

(
(−1)d−k ·

∫ ∞

+0

e−(s+n)t

t
· Tr�kLt

k

)
,

In Section 5, we saw that the generator of the transfer operators Lt
k has discrete

spectrum. From this fact and the relation

d

ds

(∫ ∞

+0

e−st

t
· eλtdt

)
=

∫ ∞

+0

e−(s−λ)tdt = (s− λ)−1

we expect that Z(s) extends to a meromorphic function on the complex plane
and the eigenvalues of the generators of Lt

k will appear as zeros and poles of the
extension depending on the parity of d− k.

For analytic extension, we have the following result, which holds for general
Anosov flows.
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Theorem 6.4 (Giulietti-Liverani-Pollicott [27]). For a general C∞ Anosov flow
f t : N → N , the dynamical zeta function Z(s) extends to a meromorphic function
on the complex plane C.

Remark 6.5. There are studies [31, 32] on special values of the dynamical zeta
functions Z(s) (mainly at s = 0).

6.3. The semi-classical (Gutzwiller-Voros) zeta function. Below we discuss
the semi-classical zeta function Zsc(s), which is another generalization of the Selberg
zeta function. For the geodesic flows on a negatively curved manifold (or more
generally for a contact Anosov flow), we define

(6.9) Zsc(s) = exp

⎛⎝−
∑
γ∈Γ

∞∑
m=1

1

m

e−sm|γ|√
det(1−Dm

γ )

⎞⎠ .

This zeta function is introduced by physicists in the field of (the semi-classical the-
ory of) quantum chaos and defined on purpose of expressing the quantum spectrum
(the eigenvalues of the Laplacian on M) approximately in terms of periodic orbits
of the classical limit [33]. Frankly the author does not know to what extent the
related argument is justified on the basis of mathematical rigor15. However, for
the case of surfaces of negative constant curvature (≡ −1) the semi-classical zeta
function Zsc(s) (as well as the dynamical zeta function Z(s)) coincides16 with the
Selberg zeta function up to shift of the variable s by 1/2.

Similarly to the case of the dynamical zeta function Z(s), the sum on the right
hand side of (6.9) converges absolutely on the region where Re(s) is sufficiently
large and hence the semi-classical zeta function is initially defined as a holomorphic
function without zeros on such region. In order to investigate its meromorphic
extension and derive information on the zeros and poles of the extension, we express
Zsc(s) using the Atiyah-Bott trace of some transfer operators, similarly to the case
of the dynamical zeta function Z(s) considered in the last subsection. First we

consider the k-th exterior product Ŵk = (E∗
s )

∧k (k = 0, 1, . . . , d) of the dual E∗
s of

the stable subbundle17Es and define the vector bundle map F t
k : Ŵk → Ŵk by

(6.10) F̂ t
k(w) = | detDf t|Es

|1/2 · ((Df−t)∗)∧k(w).

The corresponding transfer operator L̂t
k : Γ(Ŵk) → Γ(Ŵk) is

(6.11) L̂t
ku(x) = F t

k(u(f
−t(x))) = | detDf t|Es

|1/2 · ((Df−t)∗)∧k(u(f−t(x))).

15The Gutzwiller trace formula is for finite time and for the semi-classical limit � → 0. But,
in the related argument in physics, it seems that the limit t → ∞ is considered and the order of
limits are exchanged.

16We can check this by computation using the fact that Dγ =

(
exp(|γ|) 0

0 exp(−|γ|)

)
. In the

definition (6.7) of the dynamical zeta function Z(s), we do not find a specific reason why we have to
take the product with respect to n (besides the reason that this is an analogue of the Selberg zeta
function). Interestingly, in the case of the semi-classical zeta function, the product with respect
to n appears naturally (in the case of surface with negative constant curvature). The author
personally thinks that the semi-classical zeta function Zsc(s) is a more natural generalization of
the Selberg zeta function compared with the dynamical zeta function Z(s) introduced by Smale.

17Since the stable subbundle Es is not smooth, we need to provide some technical argument to
treat the non-smoothness. In the paper [23, §2], we avoid this difficulty by considering the natural
extension of the flow f t to the d-dimensional Grassmann bundle over N .
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The Atiyah-Bott trace formula for this one-parameter group of transfer operators
reads

Tr� L̂t
k =

∑
γ∈Γ

∞∑
m=1

|γ| · | detDs
γ |m/2 · Tr ((Ds

γ)
−m)∧k)

| det(Id−D−m
γ )|

· δ(t−m · |γ|),

where Ds
γ is the restriction of Dγ to Es. Since the contact Anosov flow f t preserves

the symplectic form dα on kerα = Es ⊕ Eu, we have√
| det(Id−D−m

γ )| = | det(Ds
γ)|m/2 · | det

(
Id− (Ds

γ)
−m

)
|

and hence
d∑

k=0

(−1)d−k Tr� L̂t
k =

∑
γ∈Γ

∞∑
m=1

|γ|√
| det(Id−D−m

γ )|
· δ(t−m · |γ|).

We therefore express the semi-classical zeta function as

(6.12) Zsc(s) = exp

(
−
∫ ∞

+0

e−st

t

d∑
k=0

(−1)d−kTr� L̂t
kdt

)
.

From this expression (6.12), we see that the semi-classical zeta function Zsc(s)
has meromorphic extension to the complex plane C and the (discrete) eigenvalues

of the generator of L̂t
k appear as its zeros and poles depending on the parity of d−k.

Since the real parts of the eigenvalues for the generator of L̂t
k (k = 0, 1, . . . , d) will

be largest in the case k = d, where the transfer operator L̂t
d is scalar-valued and

obtained by setting

(6.13) gt(x) = gt0(x) = (det |(Df t|Es
)(x)|)−1/2 = (det |(Df t|Eu

)(x)|)1/2

in the definition (5.1). As we remarked after Theorem 5.1, we have r+1 < r−0 = r+0
in this case and the rightmost zonal region B0 coincides with the imaginary axis
Re(s) = 0 and is isolated from the other zonal regions Bk, k ≥ 1. From this fact,
the zeros of the semi-classical zeta function Zsc(s) concentrate along the imaginary
axis. In fact, we have the following.

Theorem 6.6 (Faure-Tsujii [23]). The semi-classical zeta function Z(s) extends
to a meromorphic function on the complex plane C. The zeros of the extension are
contained in the region

R = R0 ∪R1, R0 = {|Re(s)| < ε}, R1 = {Re(s) < −χ0 + ε}
for arbitrarily small ε > 0 but for finitely many exceptions depending on ε. (See
Figure 6.) The poles are contained in the region R1 again with finitely many ex-
ceptions. Further, there exist infinitely many zeros in R0 and the imaginary part
of them satisfies the distribution law given in Theorem 5.1(1).

The conclusion of Theorem 6.6 is expected from the motivation in the definition
of the semi-classical zeta function and also may be regarded as a generalization of
the classical result of Selberg (See [34] for instance) in terms of dynamical systems.

Remark 6.7. For the dynamical zeta function Z(s) and more general dynamically
defined zeta functions, we will be able to get a description of its zeros and poles
corresponding to the band structure described in Theorem 5.1 and Theorem 5.3.
We conjecture that, in the region Re(s) > C with any C, the zeros and poles will
concentrate to several lines parallel to the imaginary axis in the limit Im(s) → ±∞.
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−χ0 0 Re(s)

Im(s)

R1 R0

Figure 6. The zeros of the semi-classical zeta function Zsc(s).

Remark 6.8. It is actually more natural to consider the zeros (and poles) as the
eigenvalues for the generator of the action of the transfer operators on the coho-
mology space along the stable foliation Fs (or the unstable foliation Fu). (See
[35, 36] for instance.) Let us ignore the problems related to non-smoothness of the
subbundles E∗

s and the foliation Fs. Let ds be the exterior derivative operator
along the stable foliation and let Λk be the space of sections of the vector bundle
(E∗

s )
k. Then, the following diagram commutes18,

(6.14)

0 −−−−→ Λ0 ds−−−−→ Λ1 ds−−−−→ · · · ds−−−−→ Λd −−−−→ 0⏐⏐�L̂t
0

⏐⏐�L̂t
1

⏐⏐�L̂t
d

0 −−−−→ Λ0 ds−−−−→ Λ1 ds−−−−→ · · · ds−−−−→ Λd −−−−→ 0

Therefore we expect that good part of the eigenvalues for the generator of L̂t
k will

be cancelled by those for L̂t
k±1 and only the eigenvalues for the action on the coho-

mology space will survive as the zeros and poles on the semi-classical zeta function.
Though this idea has not been justified to date, again by the difficulties caused by
the non-smoothness of the stable foliation, it seems possible and interesting to find
a way to realize this idea and derive more information on the analytic property of
the semi-classical zeta function19.

The spectrum of the transfer operators and the analytic properties of dynamically
defined zeta function has been studied extensively in the case of constant curvature

18The multiplication by the cocycle (6.13) is a bit problematic in showing this. But, by
considering appropriate metric on the stable leafs, we may regard it locally constant along the
leafs and hence the diagram (6.14) commutes. See [35, p. 503].

19To the best of the author’s knowledge, among the dynamically defined zeta functions, only
the semi-classical zeta function allows the reduction to the action on the space of cohomology as
explained above. For the case of discrete dynamical systems, only the simplest dynamical zeta
function, called Artin-Mazur zeta function, is reduced to the action on the space of cohomology
and, for Anosov diffeomorphisms, we can see that it is not only meromorphic but also rational
and their zeros and poles are distributed symmetrically as a consequence of Poincaré duality.
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by using the Selberg trace formula and representation theory. But, for the case
of variable curvature, the study was started only recently and much is left to be
studied at present. Its relation to the semi-classical theory of quantum chaos is a
fascinating subject, with various heuristic arguments and numerical computations.
But it seems necessary to do further fundamental research for a while before we
really tackle such problems.

Remark 6.9. As explained in the text, our argument is closely related to the semi-
classical analysis. Recently there appeared a few papers [38, 39, 40, 41] on contact
Anosov flows and dynamical zeta functions authored by specialists of semi-classical
analysis such as Datchev, Dyatlov, Nonnenmacher and Zworski.
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[9] Anosov, D. V., Sinăı, Ja. G., Certain smooth ergodic systems, Uspehi Mat. Nauk, 22 (1967),

107–172 MR0224771
[10] Parry, W. and Pollicott, M., Zeta functions and the periodic orbit structure of hyperbolic
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[21] Faure, F., Roy, N., Sjöstrand, J., Semi-classical approach for Anosov diffeomorphisms and
Ruelle resonances, Open Math. J. 1 (2008), 35–81 MR2461513

http://www.ams.org/mathscinet-getitem?mr=0242194
http://www.ams.org/mathscinet-getitem?mr=721728
http://www.ams.org/mathscinet-getitem?mr=951270
http://www.ams.org/mathscinet-getitem?mr=2113022
http://www.ams.org/mathscinet-getitem?mr=0001464
http://www.ams.org/mathscinet-getitem?mr=889254
http://www.ams.org/mathscinet-getitem?mr=0123678
http://www.ams.org/mathscinet-getitem?mr=0224771
http://www.ams.org/mathscinet-getitem?mr=1085356
http://www.ams.org/mathscinet-getitem?mr=896798
http://www.ams.org/mathscinet-getitem?mr=880376
http://www.ams.org/mathscinet-getitem?mr=1626741
http://www.ams.org/mathscinet-getitem?mr=1626749
http://www.ams.org/mathscinet-getitem?mr=2652469
http://www.ams.org/mathscinet-getitem?mr=2995886
http://www.ams.org/mathscinet-getitem?mr=2433929
http://www.ams.org/mathscinet-getitem?mr=2201945
http://www.ams.org/mathscinet-getitem?mr=2313087
http://www.ams.org/mathscinet-getitem?mr=2478465
http://www.ams.org/mathscinet-getitem?mr=2461513


92 MASATO TSUJII

[22] Faure, F. and Tsujii, M., Band structure of the Ruelle spectrum of contact Anosov flows,
C. R. Math. Acad. Sci. Paris 351 (2013), 385–391 MR3072166

[23] Faure, F. and Tsujii, M., The semiclassical zeta function for geodesic flows on negatively
curved manifolds, Invent. Math. 208 (2017), 851–998. MR3648976

[24] Ruelle, D., Zeta-functions for expanding maps and Anosov flows, Invent. Math. 34 (1976),
231-242, MR0420720

[25] Fried, D., The zeta functions of Ruelle and Selberg. I, Ann. Sci. École Norm. Sup. (4) 19
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