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STOCHASTIC ANALYSIS AND RANDOM

SCHRÖDINGER OPERATORS

NAOMASA UEKI

1. Introduction

The Donsker-Varadhan theory on large deviations [12] and the Malliavin calculus
[43] are the main theories in the stochastic analysis founded in the latter twentieth
century. Among them the theory on large deviations has been related with the re-
search on the random Schrödinger operators since the theory was founded. Indeed
the theory on large deviations is well known to be applied to prove mathemati-
cally the Lifschitz asymptotic behavior immediately after the theory was founded
[13], [46]. On the other hand, the Malliavin calculus had not been related with
the research on the random Schrödinger operators for a long time and had been
developed mainly for the stochastic differential equations of Itô type among ran-
dom differential equations. In this article, we describe parts of the research on the
random Schrödinger operators: in Section 2, we describe the development of the
relating research after the mathematical proof of the Lifschitz asymptotic behavior
and in Section 3 we describe the recent research relating also with the Malliavin
calculus. The subject in Section 2 is the behavior of the integrated density of states
and those in Section 3 are the mathematical proof of the Anderson localization by
the random magnetic field and the Wegner estimate needed in the proof.

2. Wiener functional integrations and the asymptotic behavior

of the integrated density of states

2.1. In the Poisson model. Let μ be the Poisson random measure on Rd: μ
is a random variable such that its value is in the Borel measures on R

d and, for
any disjoint Borel sets A1, . . . , An of Rd, the random variables μ(A1), . . . , μ(An) are
mutually independent and the distribution of each μ(Aj) is the Poisson distribution
with the mean |Aj |, where |Aj | is the d-dimensional Lebesgue measure of Aj . Let
h be a positive constant and let u be a positive continuous function on Rd such
that u(x) = o(|x|−d−ε) as |x| → ∞ with some ε ∈ (0,∞). Then we can define a
self-adjoint operator on L2(Rd) of the form

Hμ = −hΔ+ Vμ, Vμ(x) =

∫
u(x− y)μ(dy).

This is given as the Hamiltonian of one electron in the electric field given by the
scalar potential Vμ in the non-relativistic quantum mechanics and is called the
Schrödinger operator. Vμ is a model of the random media where the single site
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potential u is located at each sample point of the Poisson random measure, and
this is a random field which is stationary and ergodic with respect to the shift of
the space variable. For such a Schrödinger operator with a stationary and ergodic
potential, we can define a deterministic monotone increasing function N(λ;Hμ)
satisfying

1

(2R)d
#{the eigenvalues of Hμ,(−R,R)d ≤ λ} R→∞−→ N(λ;Hμ)

with the probability one and is called the integrated density of states of Hμ, where
Hμ,(−R,R)d is the restriction ofHμ to (−R,R)d by the Dirichlet boundary condition.
This function increases only on the spectral set of Hμ and the gradient reflects
the density of the spectrum. Thus this function represents the distribution of the
spectrum. Here we remark that both the spectrum of Hμ and the integrated density
of states N(λ;Hμ) are proven to be independent of the sample value of μ by the
ergodicity. The research of the asymptotic behavior of this function at the infimum
of the spectrum is one of the subjects developed earlier among the subjects on
the random Schrödinger operators. In particular, the following result is called the
Lifschitz behavior and is well known with the history that the physicist, Lifschits
[42], pointed out the existence of the behavior and Nakao [46] showed that the
behavior was essentially proved rigorously in Donsker and Varadhan [13]:

Theorem 1 ([13, 42, 46]). In the above setting, we further assume that u(x) =
o(|x|−d−2) as |x| → ∞. Then we have

lim
λ↓0

λd/2 logN(λ;Hμ) = −hd/2λ1(−ΔB(1))
d/2,

where −ΔB(1) is the Dirichlet Laplacian on the d-dimensional unit ball B(1) =

{x ∈ Rd : |x| ≤ 1} and λ1(−ΔB(1)) is the least eigenvalue of −ΔB(1).

The character of this theorem is that the decay of N(λ;Hμ) as λ ↓ 0 is very
rapid and this fact becomes the character in the case that the operator is random.
Indeed if we replace Vμ by a non-random and periodic function, then the order of
the decay of the integrated density of states defined similarly at the infimum of the
spectrum is known to be some power and is bigger than that of this theorem. This
means that the spectrum in the disordered media is much thinner than that in the
ordered media.

The proof was given by the fact that Donsker and Varadhan’s theory on the
large deviations determined the leading term as t → ∞ of the Laplace transform

(2.1)

∫
R

e−tλdN(λ;Hμ) = E[exp(−tHμ)(0, 0)]

of the integrated density of states represented by the expectation of the diagonal
part of the integral kernel exp(−tHμ)(x, y) of the heat semigroup generated by the
Schrödinger operator and represented by the Feynman-Kac formula as

exp(−tHμ)(x, y)

= E2ht,y
0,x

[
exp

(
− 1

2h

∫ 2ht

0

Vμ(w(s))ds
)]

exp
(
− |x− y|2

2ht

) 1

(2hπt)d/2
,

where E2ht,y
0,x is the expectation with respect to the d-dimensional Brownian motion

w conditioned that w(0) = x and w(2ht) = y. This asymptotic behavior is the
same as the case where u is replaced by a hard potential which is ∞ on B(1) and
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is 0 on R2 \B(1), and it is also well known that (2.1) is represented in terms of the
d-dimensional volume of the Wiener sausage obtained by fattening the trajectory of
the Brownian motion

⋃
0≤s≤2ht(w(s) +B(1)), whose behavior was the main object

of [13].
The case where the decay of u is slower than that in the above theorem is rather

easy and Pastur [51] showed the following immediately after the above theorem.

Theorem 2 ([51]). In the above setting, we further assume that u(x) = C0|x|−α(1+
o(1)) as |x| → ∞ with some α ∈ (d, d+ 2). Then we have

lim
λ↓0

λκ logN(λ;Hμ) = −Cd,αC
κ
0 ,

where κ = d/(α− d),

Cd,α =
α− d

ακ+1d

(
|Sd−1|Γ

(α− d

α

))κ+1

,

and |Sd−1| is the d − 1-dimensional volume of the d − 1-dimensional unit surface
Sd−1 = {x ∈ R

d : |x| = 1}.

The proof is also shown by determining the leading term of (2.1) as t → ∞,
which is easily obtained without applying the theory on the large deviations since
the strong effect of u weakens the effect of the Brownian motion and the estimate
is reduced to that of the moment generating function of Vμ(0). Indeed the leading
term is independent of h, which is the character of the case that the classical effect
only appears on the leading term and the quantum effect does not appear in the
term. The leading term in Theorem 2 is the same as that of the classical integrated
density of states defined by

(2.2) Nc(λ : Hμ) = E[|{(x, p) ∈ (−R,R)d × R
d : Hμ,c(x, p) ≤ λ}|](4π

√
hR)−d,

where | · | is the 2d-dimensional volume, Hμ,c(x, p) = h|p|2 + Vμ(x) is the classical
Hamiltonian, R is a positive number chosen arbitrarily: the right hand side of (2.2)
is independent of the choice of R (cf. [41]). On the other hand, in Theorem 1, the
quantum effect appears in the leading term and the effect of the potential is rather
abstract. For the critical case between these two theorems, Ôkura [48] showed that
both the quantum effect and the potential appear in the leading term in detail as
follows.

Theorem 3 ([48]). In the above setting, we further assume that

u(x) = C0|x|−d−2(1 + o(1))

as |x| → ∞ with some α ∈ (d, d+ 2). Then we have

lim
λ↓0

λd/2 logN(λ;Hμ) =
−2dd/2

(d+ 2)1+d/2
C(h,C0)

1+d/2,

where C(h,C0) is

inf
{
h

∫
Rd

|∇ψ(x)|2dx+

∫
Rd

dy
(
1− exp

(
− C0

∫
Rd

ψ(x)2dx

|x− y|d+2

))
: ψ ∈ C∞

0 (Rd),∫
ψ(x)2 = 1

}
.
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2.2. In the Poisson model under the uniform magnetic field. The above
theorems are extended to the following 2-dimensional Schrödinger operator

HB
μ =

(
i∂1 −

Bx2

2

)2

+
(
i∂2 +

Bx1

2

)2

+ Vμ

with the uniform magnetic field B > 0:

Theorem 4. (i) (Classical asymptotic behavior I: the case where u decays with a
finite power [5]) In the above setting, we further assume that u(x) = C0|x|−α(1 +
o(1)) as |x| → ∞ with some α ∈ (2,∞). Then we have

lim
λ↓0

λκ logN(λ+ B;HB
μ ) = −C2,αC

κ
0 ,

where κ = 2/(α− 2), C2,α is the constant Cd,α in Theorem 2 with d = 2.
(ii) (Classical asymptotic behavior II: the case where u decays exponentially [30])

In the above setting, we further assume that u(x) = exp(−|x|α(1 + o(1))/C0) as
|x| → ∞ with some α ∈ (0, 2). Then we have

lim
λ↓0

(log(1/λ))−2/α logN(λ+B;HB
μ ) = −πC

2/α
0 .

(iii) (Quantum asymptotic behavior [15, 30]) In the above setting, we further
assume that lim|x|→∞|x|−2 log u(x) = −∞. Then we have

lim
λ↓0

(log(1/λ))−1 logN(λ+B;HB
μ ) = −2π

B
.

(iv) (Critical asymptotic behavior [16, 30]) In the above setting, we further assume
that u(x) = exp(−|x|2(1 + o(1))/C0) as |x| → ∞. Then we have

lim
λ↓0

(log(1/λ))−1 logN(λ+B;HB
μ ) = −π

( 2

B
+ C0

)
.

As for the proof, (i) was first proven by Broderix-Hundertmark-Kirsch-Leschke
[5]. Erdös [15] next proved (iii), where u is replaced by a function with compact
support. Hupfer, Leschke, and Warzel [30] next proved (iii) in a general case, (ii)
and the lower estimate in (iv). Erdös [16] finally completed the proof of (iv). The
necessary and sufficient condition for the appearance of the quantum effect in this
setting is that the single site potential decays as a Gaussian kernel or decays faster
than a Gaussian kernel as the above theorem indicates.

Moreover, the extension to the 3-dimensional Schrödinger operator,

H
B
μ =

(
i∂1 −

Bx2

2

)2

+
(
i∂2 +

Bx1

2

)2

− ∂2
3 + Vμ,

with a uniform magnetic field B > 0 has been treated below.

Theorem 5. (i) (Classical asymptotic behavior) In the above setting, we further
assume the existence of C0 ∈ (0,∞), α = (α⊥, α3) ∈ (0,∞)2 satisfying

(2.3)
2

α⊥
+

3

α3
> 1 >

2

α⊥
+

1

α3

and p̃ ∈ [1,∞] such that

(2.4) u(x) =
C0

‖x‖αp̃
(1 + o(1))
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as |x| → ∞. Then we have

(2.5) lim
λ↓0

λκ(α) logN(λ+B : HB
μ ) = −C(α, p̃)C

κ(α)
0 ,

where, denoting x = (x1, x2, x3) ∈ R3 as (x⊥, x3) ∈ R2 × R,

‖x‖αp̃ :=

{
‖|x⊥|α⊥ , |x3|α3‖p̃ = (|x⊥|α⊥p̃ + |x3|α3p̃)1/p̃ (if p̃ ∈ [1,∞)),

|x⊥|α⊥ ∨ |x3|α3 (if p̃ = ∞),

κ(α) = (2/α⊥ + 1/α3)(1− 2/α⊥ − 1/α3)
−1, and

C(α, p̃)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

κ(α)

{
4π

α⊥α3p̃
B
(

2
p̃α⊥

, 1
p̃α3

)
Γ
(
1− 2

α⊥
− 1

α3

)}(1−2/α⊥−1/α3)
−1

(if p̃ ∈ [1,∞)),

1
κ(α)

{
2π

(
2

α⊥
+ 1

α3

)
Γ
(
1− 2

α⊥
− 1

α3

)}(1−2/α⊥−1/α3)
−1

(if p̃ = ∞).

(ii) (Quantum asymptotic behavior, Critical asymptotic behavior) In the above
setting, we further assume the existence of C0 ∈ (0,∞) and α = (α⊥, α3) ∈ (0,∞)2

satisfying

(2.6)
2

α⊥
+

3

α3
≤ 1

and p̃ ∈ [1,∞] such that (2.4) holds as |x| → ∞. Then we have

(2.7) lim
λ↓0

log(− logN(λ+B : HB
μ ))

log(1/λ)
=

2/α⊥
1− 2/α⊥ − 1/α3

+
1

2
.

As for the proof, (i) was proven by Hundertmark-Kirsch-Warzel [29], a special
case of (ii) with α⊥ = α3 = 0 was proven by Warzel [66] and a review article by
Kirsch-Metzger [36] reported that the general case of (ii) was proven by Kirsch,
Leschke, and Warzel. To treat 3-dimensional uniform magnetic field, we should
distinguish the perpendicular direction and the parallel direction with the magnetic
fields as above. A similar problem is treated by Kirsch and Warzel [37] in the case
that the scalar potential is anisotropic without magnetic fields. Here we note that
Vμ is not defined if 2/α⊥ + 1/α3 ≥ 1.

The other related works are reported in the review article by Kirsch and Metzger
[36].

2.3. In an intermediate model between the Poisson model and a periodic
model. In this article, we discuss developments after the publication of the review
by Kirsch-Metzger [36]: we focus on topics the author of this article related.

Fukushima [21] extended Theorem 1 to the following model:

(2.8) Hξ = −hΔ+ Vξ, Vξ(x) =
∑
q∈Zd

u(x− q − ξq),

where h is a positive constant, u is a non-zero, non-negative and continuous function
with a compact support, and ξ = (ξq)q∈Zd is a system of Rd-valued independent
random variables whose common distribution is

(2.9) Pθ(ξq ∈ dx) = exp(−|x|θ)dx/Z(d, θ)

with some θ ∈ (0,∞). In this equation, Z(d, θ) is the normalizing constant. The
result is the following.
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Theorem 6 ([21]). In the above situation with d ≥ 2,

(2.10) logN(λ;Hξ) �

⎧⎪⎨⎪⎩−λ−1−θ/2

(
log

1

λ

)−θ/2

(in the case of d = 2),

−λ−d/2−θ/d (in the case of d ≥ 3).

In this equation, “f(λ) � g(λ) “means” 0 < limλ↓0 f(λ)/g(λ) ≤ limλ↓0 f(λ)/g(λ) <
∞”.

The significance of this theorem is that it reveals how the behavior in Theorem 1
transitions as the potential changes from the completely random one to an ordered
one. For this argument, it was better to replace |x|θ by (1 + |x|)θ in (2.9). This
replacement does not change the proof essentially and under this replacement, the
centers of the potentials {q+ ξq}q∈Zd converges weakly to the lattice Zd as θ → ∞.
On the other hand, Appendix A in Fukushima [21] shows that

∑
q∈Zd δq+ξq con-

verges weakly to the Poisson random measure as θ ↓ 0. Therefore the model in
this subsection can be regarded as a model describing the transition from the com-
pletely random model given by the Poisson random measure to a completely ordered
model. If we take the limit as θ → 0 in (2.10) formally, then the result is consistent
with the result in Theorem 1. On the other hand, if we take the limit as θ → ∞,
then the right hand side of (2.10) diverges to −∞, which reflects that N(λ;Hξ)
remains to be zero on a neighborhood of λ = 0 since the infimum of the spectrum of
the Schrödinger operator with a positive and periodic potential is strictly positive.
Fukushima started this research from the view point of investigating the lifetime of
the Brownian motion under a random environment by (2.1). From this view point,
Donsker and Varadhan’s research [13] on the Wiener sausage was one of the first
significant results. However, the Donsker-Varadhan theory on large deviations has
not be applied to the model in this subsection. Instead of the theory, Fukushima
applied Sznitman’s method [60] of enlargement of obstacles to obtain the above
result. Though this method is involved, it has been used widely: this method has
been used to refine the result obtained by Donsker and Varadhan’s theory or to
develop the estimates of the lifetime of the Brownian motion under an random
environment [59], [60].

We concentrate our concern only on the asymptotic behavior of the integrated
density of states and discuss an extension of the above theorem. The author made
an attempt to generalize Theorems 1–3 and obtained the following results in col-
laboration with Fukushima.

Theorem 7 ([22]). In (2.8), we assume that u is a positive valued continuous
function on R

d satisfying u(x) = C0|x|−α(1 + o(1)) as |x| → ∞ with some C0 ∈
(0,∞) and α ∈ (d,∞).

(i) (Classical asymptotic behavior) If d < α < d+ 2, then

(2.11) lim
λ↓0

λκ logN(λ;Hξ) =
−κκ

(κ+ 1)κ+1

{∫
Rd

dq inf
y∈Rd

( C0

|q + y|α + |y|θ
)}κ+1

,

where κ = (d+ θ)/(α− d).
(ii) (Quantum asymptotic behavior) If d = 1 and α > 3, then

(2.12) lim
λ↓0

λ(1+θ)/2 logN(λ;Hξ) =
−π1+θh(1+θ)/2

(1 + θ)2θ
.
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If d ≥ 2 and α > d+ 2, then

(2.13) logN(λ;Hξ) �

⎧⎪⎨⎪⎩−λ−1−θ/2

(
log

1

λ

)−θ/2

(in the case of d = 2),

−λ−(d+μθ)/2 (in the case of d ≥ 3),

where μ = 2(α− 2)/(d(α− d)).
(iii) (Critical asymptotic behavior) If α = d+ 2, then

(2.14) lim
λ↓0

λ(d+θ)/2 logN(λ;Hξ) ≥
−2(d+ θ)(d+θ)/2

(d+ 2 + θ)(d+2+θ)/2
K0(h,C0)

(d+2+θ)/2,

where

K0(h,C0)

= inf
{
h‖∇ψ‖22 +

∫
Rd

dq inf
y �∈supp(ψ)−q

(∫
Rd

dxC0ψ(x)
2

|x− q − y|d+2
+ |y|θ

)
: ψ ∈ W 2,1(Rd), ‖ψ‖2 = 1

}(2.15)

and W 2,1(Rd) = {ψ ∈ L2(Rd) : ∇ψ ∈ L2(Rd)}.

The formal limits of these results as θ → 0 also consist of the results of Theorems
1–3 as in Theorem 6 and the limits as θ → ∞ diverge. The latter fact consists of the
fact that the infimum of the spectrum of a Schrödinger operator is strictly positive.
As for the transition as the variation of the speed of the decaying of the potential,
only the classical effect appears in the leading term if the potential decays slowly as
α < d+2 and the quantum effect appears if the potential decays faster as α > d+2,
as in the Poisson model. In d = 1, the leading order varies continuously at α = d+2
and does not vary for α > d + 2 as in the Poisson model. However, in d = 2, the
logarithmic term appears discontinuously in the leading order at α = d+2, though
the leading order still does not vary for α > d+2. In d ≥ 3, the leading order varies
for α > d + 2, though the order still varies continuously. These differences occur
since the states having holes in their supports contribute to the leading term. Such
states do not contribute to the leading term in the Poisson model since their kinetic
energies are rather large. However, not only the energies of the states but also the
costs for the centers of the single site potentials to move from the sites of the lattice
contribute to the asymptotic behavior of N(λ;Hξ) as λ ↓ 0. Since the costs are
small in the Poisson model, only the states with small energies contribute to the
leading term. Moreover, the leading term is independent of α if α > d + 2, since
only the kinetic energies of the states contribute to the leading term. However,
in the model in this subsection, the costs for the potentials are rather large. The
optimal combination of the potentials and the states seems to be the one where
the locations of the centers of the single potentials are near the site of the lattice
and the states have holes around the centers. For such combinations, the potential
energies and the cost for the movements of the centers reduce. Moreover if d is big,
then the kinetic energies do not so increase. This phenomenon contributes to the
results in the case of d ≥ 2 and α > d+ 2. As for the analysis of the phenomenon
that the energies of the Dirichlet Laplacian do not also increase, even if many small
holes are drilled in the domain, interesting facts are known. For this aspect, please
refer to Ozawa’s review [50] for example. Kac [33] first analyzed this phenomenon
by the stochastic analysis using the Wiener sausage. Rauch and Taylor [53, 54]
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next analyzed this phenomenon by relating it to the scattering length. Moreover,
in [53, 54], this phenomenon is introduced in the crushed ice problem: the problem
appearing when we cool juices by crushed ice. For this aspect, we can also refer to
Simon’s textbook [56]. For the proof of Theorem 7, we refer to the results obtained
for this phenomenon and we also use the method of Dirichlet-Neumann bracketing.
This method dominates the integrated density of states from above and below by
the averaged number of eigenvalues of the Schrödinger operators restricted to the
d-dimensional cube by the Dirichlet or the Neumann boundary conditions, and
estimates the averaged numbers by functional analytic methods [6], [34], [35], [52].
This method can be applied widely, though the obtained results are not so sharp.
Indeed (ii) in the above theorem is not so sharp. For this case, a little more detailed
estimate is obtained in [23] by referring to Sznitman’s method of the enlargement of
the obstacles. However, the results for the case of α = d+2 are still unsatisfactory.
Since the decay of N(λ;Hξ) becomes slower as α increases, the result in (ii) of the
above theorem gives an upper estimate for α = d + 2. Therefore we see that the
quantum effect appears if d = 1, α = 3, and h is big. We can also see that the
quantum effect appears if d ≥ 3, α = d+2, and h is big by sharpening the estimate
in (ii). However, we have no such results for d = 2.

2.4. In the intermediate model of the last subsection under the uniform
magnetic field. The author next extends Theorem 4 to the following.

Theorem 8 ([63, 64]). In the 2-dimensional Schrödinger operator HB
ξ = (i∂1 −

Bx2/2)
2+(i∂2+Bx1/2)

2+Vξ with the uniform magnetic field B > 0, let Vξ be the
function obtained by replacing the function u by a positive continuous function on
R

2 in (2.8). For this operator, the following hold:
(i) (Classical asymptotic behavior I: the case where u decays with a finite power)

We further assume that u(x) = C0|x|−α(1+o(1)) as |x| → ∞ with some α ∈ (2,∞).
Then we have

lim
λ↓0

λκ logN(λ+B;HB
ξ ) =

−κκ

(κ+ 1)κ+1

{∫
R2

dq inf
y∈R2

( C0

|q + y|α + |y|θ
)}κ+1

,

where κ = (2 + θ)/(α− 2). This leading term is the same as (2.11).
(ii) (Classical asymptotic behavior II: the case where u decays exponentially)

We further assume that u(x) = exp(−|x|α(1 + o(1))/C0) as |x| → ∞ with some
α ∈ (0, 2). Then we have

lim
λ↓0

(
log

1

λ

)−(2+θ)/α

logN(λ+B;HB
ξ ) = − 2πC

(2+θ)/α
0

(θ + 1)(θ + 2)
.

(iii) (Quantum asymptotic behavior) We further assume that

lim|x|→∞|x|−2 log u(x) = −∞.

Then we have

(2.16) lim
λ↓0

(
log

1

λ

)−(1+θ/2)

logN(λ+B;HB
ξ ) ≥ −22+θ/2π

(θ + 1)(θ + 2)B1+θ/2
.

Moreover, if θ > 4, then there exists a finite positive constant K such that

(2.17) lim
λ↓0

(
log

1

λ

)−(1+(θ−4)/6)

logN(λ+ B;HB
ξ ) ≤ −K

B1+(θ−4)/6
.
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(iv) (Critical asymptotic behavior) We further assume that u(x) = exp(−|x|2(1+
o(1))/C0) as |x| → ∞. Then we have

lim
λ↓0

(
log

1

λ

)−(1+θ/2)

logN(λ+B;HB
ξ ) ≥ −2π

(θ + 1)(θ + 2)

( 2

B
+ C0

)1+θ/2

.

For this model, we do not obtain sufficient upper estimates including the quan-
tum effect and we do not obtain conditions for the appearance of the quantum
effect except for the case of θ > 4. The author conjectures that an upper estimate
like (2.16) exists and a condition for the appearance of the quantum effect is still
that u decays as the Gaussian kernel or u decays faster than the Gaussian kernel.
To solve this problem, we should extend (2.17) to a general θ and improve the
estimate. For this, we should improve the lower estimate of the infimum of the
spectrum of the Schrödinger operator with a uniform magnetic field on a domain
with holes with the Dirichlet boundary condition. To prove Theorem 4, we do not
need the information of the effect of the holes and we have only to show that the
infimum of the spectrum attains its minimum under the given area of the domain
when the domain becomes the disk. This necessary fact was proven in Erdös [14],
where the key of the proof was a result on the isoperimetric problem. This prob-
lem shows that the maximum of the area of the domain under the given length of
the boundary is attained when the domain is the disk. Now we should estimate
the effect caused by opening holes in the domain and we should apply effectively
the estimate to that of the spectrum of the Schrödinger operator with a uniform
magnetic field. Equation (2.17) is based on a lower estimate of the infimum of the
spectrum obtained by applying the improvement by Osserman [49] of an inequality
for the isoperimetric problem as in Erdös [14].

We extend also Theorem 5 to the following.

Theorem 9 ([63, 64]). In the 3-dimensional Schrödinger operator H
B
ξ = (i∂1 −

Bx2/2)
2+(i∂2+Bx1/2)

2−∂2
3+Vξ with the uniform magnetic field B > 0, let u be a

positive continuous function and ξ = (ξq)q∈Z3 is a system of R3-valued independent
random variables whose common distribution is

(2.18) Pθ(ξq ∈ dx) = exp(−‖x‖θp)dx/Z(θ, p)

with some θ = (θ⊥, θ3) ∈ (0,∞)2 and p ∈ [1,∞], where Z(θ, p) is the normalizing
constant. For this operator, the following hold:

(i) (Classical asymptotic behavior) We further assume (2.4) as |x| → ∞ with
some C0 ∈ (0,∞), p̃ ∈ [1,∞] and α = (α⊥, α3) ∈ (0,∞)2 satisfying (2.3). Then
we have

(2.19) lim
λ↓0

λκ(α,θ) logN(λ+B;HB
ξ ) =

−κ(α, θ)κ(α,θ)

(1 + κ(α, θ))1+κ(α,θ)
C(α, θ, C0)

1+κ(α,θ),

where

(2.20) κ(α, θ) =
(θ⊥/α⊥) ∨ (θ3/α3) + 2/α⊥ + 1/α3

1− 2/α⊥ − 1/α3
,

C(α, θ, C0)

=

∫
R3

dq inf
y=(y⊥,y3)∈R3

( C0

‖q + y‖αp̃
+
∥∥∥1 θ⊥

α⊥
≥ θ3

α3

|y⊥|θ⊥ , 1 θ⊥
α⊥

≤ θ3
α3

|y3|θ3
∥∥∥
p

)
.

(2.21)
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(ii) (Quantum and critical asymptotic behavior) We further assume (2.4) as
|x| → ∞ with some C0 ∈ (0,∞), p̃ ∈ [1,∞] and α = (α⊥, α3) ∈ (0,∞)2 satis-
fying (2.6). Then we have

lim
λ↓0

λμ1(α⊥,θ) logN(λ+B;HB
ξ ) > −∞,(2.22)

lim
λ↓0

λμ2(α,θ) logN(λ+B;HB
ξ ) < 0 ,(2.23)

where

(2.24) μ1(α⊥, θ) =
3

α⊥ − 2
+

1

2
+

3θ⊥
2(α⊥ − 2)

∨ θ3
2
,

(2.25) μ2(α, θ) =
2/α⊥

1− 1/α3 − 2/α⊥
+

1

2
+

θ⊥/α⊥
1− 1/α3 − 2/α⊥

∧ θ3
2
.

Estimates appearing the quantum effect are still insufficient and we do not even
know the leading order. However, since the upper estimate (2.23) is effective, we
know that the condition for the appearance of the quantum effect is (2.6) as in the
Poisson model. The estimate (2.23) is proven by reducing the asymptotic problem
to that of the integrated density of states of a 1-dimensional Schrödinger operator
−∂2

3 + Vξ(x⊥, x3) without magnetic fields by the inequality

Tr[exp(−t(HB
ξ + ε|x|2)−B)]

≤Tr
[
exp

(
− t

2

((
i∇⊥ +

B

2

(
−x2

x1

))2

−B
))

exp(−t(−∂2
x3

+ V ξ + ε|x|2))

× exp
(
− t

2

((
i∇⊥ +

B

2

(
−x2

x1

))2

−B
))]

using the Golden-Thompson inequality as in Warzel [66].

3. Malliavin calculus and Wegner type estimate

The Malliavin calculus succeeded to show the absolute continuity of the prob-
ability distribution of the solution of a stochastic differential equation (3.8) of Itô
type only by the calculus on the probability space without using the theories on
differential equations usually used [43], and has been extended also to stochastic
partial differential equations (see [47] for example) and to stochastic differential
equations satisfied by stochastic processes of jump type (see [11] for example). On
the other hand, the Wegner type estimate is an important estimate for random
Schrödinger operators. This estimate also shows the smoothness of the probability
distributions of eigenvalues by the integration by parts on the probability space.

However, the Wegner type estimate has not been discussed as a related topic to
the Malliavin calculus. The reason seems to be that the derivative of the eigenval-
ues of random operators with respect to the random elements cannot be estimated
effectively except for the first derivative. This situation is different with the solu-
tions of the stochastic differential equations. Indeed, in the Malliavin calculus, the
smoothness of the probability distributions of the solutions of the stochastic dif-
ferential equations is discussed by differentiating the solutions many times and the
necessary condition for this argument is summarized to the non-degeneracy in the
Malliavin sense. On the other hand, for the Wegner type estimate, the integration
by parts has been used only one time and the necessary condition for this argument
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to deduce the differentiability of the probability distributions of the eigenvalues is
the monotonicity of the eigenvalues with respect to the random elements. However,
the monotonicity is too restrictive for some cases. For example, the Schrödinger
operators with random magnetic fields do not have monotonicity. Therefore the
Wegner-type estimate for these operators has been very restrictive until recently
(see [27], [28], [38], [39], [62]). Indeed, in the works [27], [28], [39], [62] on the
Wegner type estimate for random magnetic fields, some conditions are posed on
the vector potentials. However, the gauge invariance implies that the spectrum
depends only on the magnetic fields and is independent of the choice of the scalar
potentials. Thus the conditions should be posed only on the magnetic fields.

Recently Erdös and Hasler [17], [18], [19] succeeded to obtain such a theory.
They succeeded to reduce the estimates of the derivatives of the eigenvalues to
those of the derivatives of the resolvent operators and by this reduction, they gave
a Wegner type estimate for the Schrödinger operators with a positive random mag-
netic field by 2 times the integration by parts on the probability space. For this,
they showed non-degeneracy corresponding to the non-degeneracy in the Malliavin
sense by dominating the quantity corresponding to the Malliavin covariance from
below by a positive quadratic form of the magnetic field. The same argument has
been used for the stochastic differential equations of Itô type. The case where the
magnetic field is positive corresponds to the case where the generator is elliptic in
the stochastic differential equations of Itô type. However, the Malliavin calculus has
treated the case where the generator satisfies only Hölmander’s condition, which
is more general than the ellipticity, since the calculus was created. Therefore we
may obtain a Wegner type estimate without the positivity of the magnetic field by
applying the techniques developed for the Malliavin calculus. This idea is applied
to a fundamental Gaussian random magnetic field in [65].

In this section, we discuss this work and its background.

3.1. Setting. Let ω = (ω(h) =
∫
h(x)ω(dx))h∈L2(R2) be a 2-dimensional white

noise, which is a Gaussian random field on L2(R2) such that, for any h1, . . . , hn ∈
L2(R2), (ω(h1), . . . , ω(hn)) obeys the n-dimensional normal distribution with the
mean vector 0 and the covariance matrix ((hi, hj)L2)1≤i,j≤n. As for the fundamen-
tal tools for this random field, we can refer to [47] .

As the magnetic field, we take the random field

(3.1) Bω(x) = B + B̃ω(x), B̃ω(x) =

∫
R2

σ(x− y)ω(dy),

where B ∈ R,

(3.2) σ(x) = (σ2 − |x|2)ν+,

σ ∈ (0,∞), ν ∈ (3/2,∞), and for any a ∈ R, a+ = max{a, 0}. One character of σ
is that its Fourier transform is written as

(3.3) σ̂(ξ)
(
:=

∫
R2

exp(−2πiξ · x)σ(x)dx
)
=

σν+1Γ(ν + 1)

πν |ξ|ν+1
Jν+1(2πσ|ξ|),

where

(3.4) Jν+1(t) =

∞∑
m=0

(−1)m(t/2)2m+ν+1

m!Γ(m+ ν + 2)
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is the Bessel function of the order ν+1. Under the assumption ν > 3/2, the sample
path Bω(x) is locally square integrable with its derivatives of order less than or
equal to 2. Thus the sample path is C1 in x by the Sobolev embedding theorem.

Now, for any L ≥ 1 and ω, let Hω
L be the self-adjoint operator on the Hilbert

space L2((−L,L)2) of square integrable functions on the square (−L,L)2 obtained
by restricting the operator

(3.5) Hω :=
2∑

ι=1

(
i
∂

∂xι
+Aω

ι (x)
)2

by the Dirichlet boundary condition, where Aω is a vector potential: a vector field
satisfying ∇×Aω = ∂2A

ω
1 − ∂1A

ω
2 = Bω.

3.2. Main results: Wegner type estimate. Our main result is the following.

Theorem 10 (Wegner type estimate for a Gaussian random magnetic field, [65]).
Under the setting in the last subsection, there exist finite positive constants C0, C1,
C2 such that

(3.6) E[Tr[χ[E−η,E+η](H
ω
L)]] ≤ C0R

2ηLC1

for any R ∈ [1,∞), L ≥
√
R ∨ C2 and E, η > 0 satisfying E + η ≤ R.

This is an extension of the estimate obtained by Wegner [67] for the Anderson
model, which is the self-adjoint operator

(AXϕ)(n) =
∑

m=(m1,...,md)∈Zd:maxi |mi−ni|=1

ϕ(m) +Xnϕ(n)

on �2(Zd) = {ϕ : Zd → C,
∑

n∈Zd |ϕ(n)|2 < ∞} defined from the system of real
random variables X = {Xn}n∈Zd . If we denote the restriction of this operator to
�2({−n,−n + 1, . . . , n}) = {ϕ ∈ �2(Zd) : supp ϕ ⊂ {−n,−n + 1, . . . , n}} by AX

L ,
then the estimate obtained by Wegner [67] is

(3.7) E[Tr[χ[E−η,E+η](A
X
L )]] ≤ CηLd

when X = {Xn}n∈Zd is a system of independently and identically distributed
random variables whose common distribution has a bounded and smooth density
function. One crucial difference between this estimate and our estimate (3.6) is
that the power of L is d. From this estimate, we can obtain an upper bound of an
important quantity called the density of states and defined by

lim
L↑∞,η↓0

Tr[χ[E−η,E+η](A
X
L )]/(ηLd) = n(E).

To obtain the upper bound was the motivation of Wegner [67]. However, C1 in (3.6)
is known only as a very big number, and improving the estimate for the random
magnetic field to an estimate like (3.7) is an issue that remains for the future. On
the other hand, by applying Chebyshev’s inequality to (3.7), we obtain an estimate
of the probability of the existence of the eigenvalues in a small energy interval:

P(Tr[χ[E−η,E+η](A
X
L )] ≥ 1) ≤ CηLd.

Minami [44] developed this estimate to an estimate of the probability of the event
that 2 or more eigenvalues exist in a small energy interval,

P(Tr[χ[E−η,E+η](A
X
L )] ≥ 2) ≤ 1

2
(CηLd)2,
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to obtain results on the level statistics, and this developed estimate is called a
Minami type estimate. Moreover, Combes, Germinet, and Klein [7] developed
these estimates to several estimates including an estimate of the probability of the
event that n or more eigenvalues exist in a small energy interval,

P(Tr[χ[E−η,E+η](A
X
L )] ≥ n) ≤ 1

n!
(CηLd)n,

and these estimates are applied to obtain results on the multiplicity of each eigen-
value and on the conductance. Germinet and Klopp [26] further improve the results.
The development in this direction has been mainly considered on discrete models.
However, extensions to continuous models are also attempted as in [8].

On the other hand, even the estimate, as in Theorem 10, is effective for the proof
of the Anderson localization by the multi-scale analysis founded by Fröhlich and
Spencer [20] as we can obtain the results in the next subsection from Theorem 10.

3.3. Application to the proof of the Anderson localization. By Theorem 10
in the last subsection, we obtain the following.

Corollary 11. For the self-adjoint operator Hω on the Hilbert space L2(R2) of
square integrable functions on the whole space R2 of the form of (3.5), the Anderson
localization on a low energy interval occurs as follows:

(i) there exists a finite positive constant ε0 such that the interval [0, ε0] is included
in the pure point spectrum of Hω;

(ii) the corresponding eigenfunctions decay exponentially;
(iii) for any positive number p, any interval I included in the interval [0, ε0] and

any compact set K in R2, we have

E

[
sup
t

∥∥∥|x|pe−itHω

1I(H
ω)1K

∥∥∥
L2(R2)→L2(R2)

]
< ∞,

where ‖ · ‖L2(R2)→L2(R2) is the operator norm of the bounded linear operators on

L2(R2).

By the Anderson localization, we mean the phenomenon that the electron in
random media as semiconductors made by doping impurities is bounded spacially
by the randomness as its energy closes to the boundary of the admitted energy
intervals. The existence of this phenomenon was pointed out in the work [3] in
1958 by Anderson, a researcher on the condensed matter physics. In the progress
of the research on this phenomenon, the Anderson transition has also attracted
attention. The Anderson transition is the phenomenon that the state of the electron
in random media changes from bounded states to unbounded states as the energy
varies from a neighborhood of the boundary of the energy interval to inside. The
energy changing the property of the states is called the mobility edge. The research
on these phenomena has been one of the main subjects in condensed matter physics.
For the related contribution, the Nobel Prize in physics in 1977 was awarded jointly
to Anderson, van Vleck, and Mott. The relating mathematical problem has also
been studied actively. The Anderson localization is mathematically formulated
as (i), (ii), (iii) in Corollary 11 above, for example. The Anderson transition is
formulated as follows: the spectrum becomes a pure point outside mobility edges
and becomes continuous inside pairs of adjacent mobility edges. However, the
mathematical proof is far from the completion. One exception is the 1-dimensional
case and it is known that the localization occurs for all energies in all interested
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1-dimensional models. For the 1-dimensional case, it is crucial that we can apply
the techniques for the ordinary differential equations, which is insufficient for the
multi-dimensional case. The present achievements for the multi-dimensional case
are the proofs of the Anderson localizations in the fundamental Anderson models,
their continuous analogues are called the alloy type models, and the related models,
and we have almost no results on the Anderson transition including the existence
of the continuous spectrum (see [6], [40], [52]). For random magnetic fields, even
the proof of the Anderson localization was given only in restrictive cases (see [17],
[27], [28], [39], [62]). The case of the random magnetic fields may be imagined to be
more complicated than the case of the Anderson model as follows: in the Anderson
model, we have only to consider the random geographical features of mountains and
valleys made by the random scalar potentials. However, in the random magnetic
field, the rotating effects by the vector potentials vary randomly. The existence of
the Anderson localization in random magnetic fields is not so established as in the
models related to Anderson models.

The multi-scale analysis is a method of an induction combining estimates of
the resolvent operators on small cubes to obtain similar estimates on larger cubes
by the Wegner type estimate. This method is the present main tool to prove the
Anderson localization in the multi-dimensional cases. Recently Bourgain and König
[4] extended this method to an alloy type model where the random variables obey
a discrete distribution, and their theory was developed by Germinet and Klein
[25]. Thus we can also expect the development for this direction. As another
method for the proof of the Anderson localization in discrete models, Aizenman
and Milchanov [2] found a method called the fractional moment method, which
estimates the fractional moment of the integral kernel of the resolvent operator on
the whole space. Their method was extended to continuous models by Aizenman,
Elgart, Naboko, Schenker and Stolz [1]. However, this method is too new and has
not been extended to the random magnetic fields.

Corollary 11 is obtained by applying also Germinet and Klein’s theory on the
bootstrap multi-scale analysis [24], which is the most powerful method among all
of the multi-scale analyses. Their theory gives a series of necessary conditions for
the statements of the Anderson localization to hold. These conditions are easily
checked by standard arguments for Schrödinger operators except for the Wegner
type estimate and the initial estimate for the first step of the induction of the multi-
scale analysis. The initial estimate is usually proven by using the exponential decay
of the integrated density of states at the infimum of the spectrum as is discussed in
Section 2. The exponential decay in random magnetic fields is proven by Nakamura
[45] and the author [61], which are sufficient for the proof of Corollary 11.

Corollary 11 (ii) is called the exponential localization and this is proven only by
a simpler multi-scale analysis without using the bootstrap multi-scale analysis [24].
Thus the importance of the bootstrap multi-scale analysis [24] is that this method
proves Corollary 11 (iii). This phenomenon is called the strong dynamical local-
ization. The strong dynamical localization states that the dynamical localization
discussed in [9] and [10] holds in a stronger sense. The dynamical localization dis-
cussed in [9] and [10] states that the quantity inside of the expectation in (iii) with
p = 1 is finite with the probability one. This statement is stronger than Corollary
11 (i).
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3.4. Malliavin calculus. Before discussing the proof of Theorem 10, we summa-
rize the related issues in the Malliavin calculus.

Let x(t, w) be the solution of the stochastic differential equation

(3.8) x(t) =

∫ t

0

a(x(s))ds+

∫ t

0

b(x(s))dw(s)

of Itô type, then this is a functional on the classical Wiener space W := {w :
[0, t] → R : continuous, w(0) = 0}. However, its functional derivatives are well
defined only in the direction of the elements of the space H = {h : [0, t] → R :
absolutely continuous, h′ ∈ L2, h(0) = 0}, which is called as the Cameron-Martin
space. The reasons are that x(t, w) is defined only with probability one, where the
probability is the Wiener measure, the probability distribution of the Brownian
motion, and that the Wiener measure is absolutely continuous under the parallel
transport only in the direction of the Cameron-Martin space. Thus we follow Defi-
nition 2.6 in [57]: a functional F(ω) on W is said to be H-differentiable at ω0 ∈ W
if there exists DF(ω0) ∈ H such that

lim
ε→0

{F(ω0 + εΦ)−F(ω0)}/ε = (DF(ω0),Φ)H

for any Φ ∈ H. Here we note that H becomes a Hilbert space with (h, k)H =∫ 1

0
h′(s)k′(s)ds as its inner product. Then we can show that x(t, w) is H-differenti-

able for any times at almost all w under the condition that a and b are smooth and
their all derivatives are bounded. By a formal integration by parts on W , for any
n ∈ {0, 1, 2, . . .}, there exist N(n) ∈ N and Fn(t, ·, w) ∈

⋃
p∈[1,∞) L

p(W ) such that

∂n
x

P (x(t, w) ∈ dx)

dx
= E[‖Dx(t, w)‖−N(n)

H Fn(t, w, x)]

(see [32] V-(9.6), (9.7)). This calculation is justified if

(3.9) E[‖Dx(t, w)‖−n
H ] < ∞ for any n ∈ N.

This is the statement of the non-degeneracy in the Malliavin sense and the quantity
‖Dx(t, w)‖2H in this it is called the Malliavin covariance. The reason for the name
“covariance” is that the covariance becomes det((Dxj(t, w), Dxk(t, w))H)1≤j,k≤d

for the solution (xj(t, w))1≤j≤d of a stochastic differential equation on R
d.

Accordingly the important step for the application of the Malliavin calculus is
the proof of the non-degeneracy in the Malliavin sense. The proof is usually given by
applying estimates of stopping times of the Brownian motion. Stopping times are
useful tools for subjects related to stochastic processes including Brownian motions.
However, applying them to problems on random fields as ours is not straightforward.
However, another important step of the proof of the non-degeneracy is to reduce
the estimate of the Malliavin covariance to that of a positive quadratic form of
the Brownian motion. Such methods are useful also for subjects on random fields.
Thus we refer to this step to consider our problem. Another subject where quadratic
forms of the Brownian motion play an important role is the asymptotic problem of
a stochastic oscillatory integral

E[exp(
√
−1ξF (w))]

as ξ → ∞. This problem is related closely with the smoothness of the distribution
of F (w). As for this subject and the related fields, refer to the review by Ikeda [31].
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3.5. Erdös and Hasler’s Wegner type estimate. In this subsection we discuss
the Wegner type estimate given in Erdös and Hasler [17]. Their random magnetic
field is represented as

(3.10) Bω(x) =
∑
k∈Z+

ck
∑

a∈Z2/2k

ωk
au(2

k(x− a))

and satisfies

(3.11) C1 ≤ Bω(x) ≤ C2,

where ω = {ωk
a}a∈Z2/2k,k∈Z+

is a system of independent real random variables such

that the distribution of ωk
a is independent of a, u is a positive smooth function with

a compact support on R2, {ck}k∈Z+
is a series of positive numbers, and C1, C2 are

finite positive constants.
For this, they showed

(3.12)
∑
k,a

(∂ωk
a
λ�(Hω

L))
2 ≥ C3/L

C4 > 0

and, under this estimate, they gave a Wegner type estimate forHω
L . In this sentence,

Hω
L is the Schrödinger operator Hω

L where the magnetic field Bω(x) is replaced by
Bω(x) in (3.10), and λ�(Hω

L) is its �th smallest eigenvalue. To show (3.12), they
used a technical method based on the special structure of the magnetic field in
(3.10). To extend this to Gaussian random fields, we use other methods discussed
below. The estimate (3.12) corresponds to the non-degeneracy in the Malliavin
sense in the framework of the stochastic differential equations of Itô type. The
monotonicity used before their work corresponds to the similar estimate where
(∂ωk

a
λ�(Hω

L))
2 is replaced by ∂ωk

a
λ�(Hω

L) in (3.12). However, their theory implies
that the monotonicity is not necessary for the Wegner type estimate and it is
sufficient that the eigenvalues always move sensitively in some direction on the
probability space. We will show this in this subsection:

Proof of a Wegner type estimate under (3.12). We first introduce the function
t(h) := (h + 1)(5R)3(5R + h + 1)−3 to cutoff a high energy part. Since the first
derivative of this function is dominated from below by a positive constant on the
interval [−1, 2R− 1], we have

(3.13) Tr[χ[E−η,E+η](Hω
L)] ≤ Tr[χ[t(E)−η,t(E)+η](t(Hω

L))]

if [E − η, E + η] ⊂ [−1, 2R − 1]. Since we obtain∑
k,a

(∂ωk
a
λ�(t(Hω

L)))
2 ≥ C5/L

C4 > 0

from (3.12), the right hand side of (3.13) is dominated from above by

(3.14) LC4

∑
k,a,�

χ[t(E)−η,t(E)+η](λ�(t(Hω
L)))(∂ωk

a
λ�(t(Hω

L)))
2.

Here we introduce

F (t) =

∫ t

−∞
χ[t(E)−η,t(E)+η](s), G(t) =

∫ t

−∞
F (s)ds.
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Then (3.14) is rewritten as

(3.15) LC4

∑
k,a,�

{∂2
ωk

a
G(λ�(t(Hω

L)))− F (λ�(t(Hω
L)))∂

2
ωk

a
λ�(t(Hω

L))}.

Now the key point in Erdös and Hasler [17] is that they dominate (3.15) from above
by

(3.16) LC4

∑
k,a

{∂2
ωk

a
Tr[G(t(Hω

L))]− Tr[F (t(Hω
L))∂

2
ωk

a
t(Hω

L)]}

(See [17] Lemma 5.2), since the second derivatives of eigenvalues, which are too
complicated, are replaced by derivatives of resolvent operators and so on, which are
simpler, in (3.16). Then, by a simple estimate, we have

(3.17) |Tr[F (t(Hω
L))∂

2
ωk

a
t(Hω

L)])| ≤ C6ηL
C7 .

Moreover, by repeating the integration by parts on the probability space for two
times, we have

(3.18) E[∂2
ωk

a
Tr[G(t(Hω

L))]] = E[fa,k(ω)Tr[G(t(Hω
L))]] ≤ C8ηL

C9

and we can obtain a Wegner type estimate, where fa,k(ω) is a suitable function of
ω.

3.6. Lower estimate of the gradients of the eigenvalues in terms of a
quadratic form of a magnetic field. In this subsection we give an estimate
corresponding to (3.12) used for the proof of the Wegner type estimate in the
setting in Subsection 3.1.

We use the vector potential

(3.19) Aω
L(x) :=

(
∂2
−∂1

)
(−ΔL)

−1Bω(x)

only on (−L,L)2, where ΔL is the Dirichlet Laplacian on (−L,L)2. Its eigenvalues
and eigenfunctions are

En,L =
(π|n|

2L

)2

and Φn,L(x) =
1

L

2∏
ι=1

sin
(nιπ

2

(xι

L
+ 1

))
for n = (n1, n2) ∈ N2. By using these, we can write this as

(3.20) (−ΔL)
−1Bω(x) =

∑
n∈N2

Φn,L(x)

En,L

∫
(−L,L)2

Φn,L(y)B
ω(y)dy.

Since ε �→ λ�(H
ω+εΦ
L ) is analytic for any Φ ∈ L2(R2) by the perturbation theory

(see [55], §XII.2), λ�(H
ω
L) is H-differentiable for any times everywhere in the sense

of Subsection 3.4. Here we note that the Wiener space W is the space D′(R2) of
the distributions on R2 and the Cameron-Martin space H is L2(R2) in the setting
of Subsection 3.1. Then the left hand side of (3.12) corresponds to ‖Dλ�(H

ω
L)‖2H .

In the following we denote the H-derivative (DF ,Φ)H by DΦF for any Φ ∈ H and
any functional F on W . Then by the Feynman-Hellmann theorem ([58]), we have

DΦλ�(H
ω
L) = (jω� , DΦA

ω
L)H = (∇× jω� , (−ΔL)

−1σ ∗ Φ)L2 .
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In this equation jω� is an R2-valued function called the current of the normalized
eigenfunction ψω

� of the Schrödinger operator Hω
L with the eigenvalue λ�(H

ω
L), it is

written as

(3.21) jω� (x) = 2Re ψω
� (x) · (i∇+Aω

L(x))ψ
ω
� (x),

and its properties are investigated in Erdös and Hasler [17] to show (3.12).
We will use the following modification of Lemma 6.2 in [17].

Lemma 12 (cf. [17] Lemma 6.2).

(3.22) ‖jω� ‖2L2(R2) ≥
1

4L2
F(Bω),

where

(3.23) F(Bω) =

∫ cL−11R(ω)−2

0

∣∣∣ ∫
x∈R2:|x−xω,L|≤r

Bω(x)dx
∣∣∣2 dr

2πr
,

xω,L is a point in (−L,L)2∩cL−11R(ω)−2Z2 determined by {Bω(x)}x∈(−L,L)2 , c is

a finite positive constant, and R(ω) = ‖Bω‖2W 2,2((−L,L)2) + R. In the last equality,

‖ · ‖W 2,2((−L,L)2) is a norm of the Sobolev space W 2,2((−L,L)2) of the functions on

(−L,L)2 whose derivatives of order less than or equal to 2 are all square integrable,
and is defined by

‖ϕ‖W 2,2((−L,L)2) =
( 2∑

j=0

‖∇jϕ‖L2((−L,L)2)2j

)1/2

for ϕ ∈ C∞((−L,L)2), for example.

For the proof of this lemma, we take xω,L so that |ψω
� | ≥ 1/(2L) on {x ∈ R

2 :
|x− xω,L| ≤ cL−11R(ω)−2}. This is possible by max |ψω

� | ≥ 1/L and estimates on
the continuity of ψω

� on a neighborhood of the point attains max |ψω
� |. Then we can

show

‖jω� ‖2L2(D(xω,L,cL−11R(ω)−2)) ≥
1

4L2
‖Aω

� −∇argψω
� ‖2L2(D(xω,cL−11R(ω)−2))

by (3.21). Moreover, by using the Stokes theorem, we can dominate the right hand
side from below by F(Bω).

On the other hand, since ∇ · jω� = 0, we have

(3.24) ‖∇ × jω� ‖2H = ‖∇jω� ‖2H ≥
(π

L

)2

‖jω� ‖2L2((−L,L)2).

In the last inequality, we use the fact that the least eigenvalue of −ΔL is (π/L)2.
To obtain an analogue of (3.12), Φ may be taken from an orthonormal basis of H

and the basis may be taken as {Φn,L}n∈N2 referring to (3.19) and (3.20). However,
in

DΦn,L
λ�(H

ω
L) = σ̂

( n

2L

)( L

π|n|
)2

(∇× jω� ,Φn,L)H ,

one difficulty is that σ̂(n/(2L)) may be 0. Now we use (3.3) and results on the
behavior of the Bessel functions. Useful results for our purpose are that the positive
zero points {jν+1,s}s∈N of Jν+1 are all simple, jν+1,s ∼ (s+ ν/2+1/4)π as s → ∞,
and

√
tJν+1(t)

t→∞∼
√

2

π
cos

(
t− 2ν + 3

4
π
)
,
Jν+1(t)

tν+1

t→0∼ 1

2ν+1Γ(ν + 2)
.
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Then to avoid the zero points of the Bessel function, we modify n in Φn,L(x) as

(n; ε)

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n+

εjL

8πσ

n

|n|
(
if |n| ∈ L

πσ

[
jν+1,s, jν+1,s +

j

8

)
for some s ∈ N

)
,

n− εjL

8πσ

n

|n|
(
if |n| ∈ L

πσ

(
jν+1,s −

j

8
, jν+1,s

)
for some s ∈ N

)
,

n (otherwise)

by taking ε ∈ (0, 1), where j := infs∈N(jν+1,s+1 − jν+1,s) ∧ jν+1,1 > 0. Moreover
we should reduce the summation in n to a finite sum. For this, we use (3.24),

‖∇ × jω� ‖L2 ≤ CL9R(ω)2, and ‖∇(∇× jω� )‖L2 ≤ CL22R(ω)6.

Then we have

(3.25)
∑

|n|2≤N(ω)

(DΦ(n;ε(ω)),L
λ�(H

ω
L))

2 ≥ C1
ε(ω)2L2ν−1

N(ω)ν+5/2
F(Bω),

where

N(ω) = C2L
30R(ω)6F(ω)−1 and ε(ω) = C3F(ω)2L−58R(ω)−11.

In [17], since we have F(Bω) ≥ C2/L
C3 by the assumption (3.11), we reach (3.12).

However, in our case, since F(Bω) still may attain 0, we should use the results in
the next subsection.

3.7. Proof of the non-degeneracy. The main part of the quantity given in (3.23)
is the quadratic form

(3.26) X(t) :=

∫ t

0

∣∣∣ ∫
|x|≤r

Bω(x)dx
∣∣∣2 dr

2πr

of the magnetic field. The quadratic form in (3.26) is positive definite and its rank
is infinity. Therefore we can show the following estimate.

Theorem 13 ([65], Lemma 4.2). For any R ∈ (0,∞), there exists c ∈ (0,∞) such
that

E[exp(−sX(R))] ≤ exp(−cRs1/(2ν+5))

for any s ∈ [1,∞) and R ∈ (0, R] satisfying Rs1/(2ν+5) ≥ 1.

By this theorem and the arguments in the Tauberian theory, we can obtain the
following estimate.

Corollary 14 ([65], Corollary of Lemma 4.1). For any p,R ∈ (0,∞), there exists
c ∈ (0,∞) such that

E[X(R)−p] ≤ cR−p(2ν+5)

for any R ∈ (0, R].

This estimate and (3.25) play the role of (3.12).
For the proof of Theorem 13, the key point is that the rank ofX(R) as a quadratic

form is infinite. To use this, we take a sequence {Rj}j such that R = R0 > R1 >
R2 > · · · > Rn ↓ 0 and use the property that the part

B(Rj−1) \B(Rj) � x �→
∫
B(Rj+σ)c

σ(x− y)ω(dy)
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of the increment X(Rj−1)−X(Rj) is independent of X(Rj). Then we obtain

E[exp(−sX(R))] ≤
∞∏
j=1

E[exp(−sX(Rj−1, Rj))],

where

X(Rj−1, Rj) :=

∫ Rj−1

Rj

dr

2πr

(∫
B(r)\B(Rj)

dx

∫
B(Rj+σ)c

σ(x− y)ω(dy)

)2

.

In the setting of Subsection 3.1, we can show

c1(Rj−1 −Rj)
2ν+5

( Rj

Rj−1

)3

≤ E[X(Rj−1, Rj)] ≤ c2(Rj−1 −Rj)
2ν+5

(Rj−1

Rj

)2

.

Since ω is a Gaussian random field, we can estimate E[exp(−sX(Rj−1, Rj))]. Then
by taking {Rj}j appropriately, we can complete the proof of Theorem 13.

3.8. Proof of the main theorem. To prove Theorem 10 in the setting of Subsec-
tion 3.1, we have only to extend the arguments in (3.13)–(3.18) of Subsection 3.5.
For the step corresponding to (3.18), we should dominate quantities depending on
ω from above by H-differentiable functionals of ω so that the integrations by parts
proceed well. Moreover, to apply Corollary 14, we classify the cases according to
the values of xω,L ∈ (−L,L)2∩cL−11R(ω)−2Z2 and R(ω). For details, refer to [65].
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Henri Poincaré, 13 (2012), 1719–1731. MR2994757
19. L. Erdös and D. Hasler, Anderson localization at band edges for random magnetic fields, J.

Stat. Phys, 146 (2012), 900–923. MR2902447
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