Motivic cohomology: applications and conjectures
Author:
Thomas Geisser
Translated by:
Shane Kelly
Original publication:
S\=ugaku, tom 67 (2015), nomer 3.
Journal:
Sugaku Expositions 32 (2019), 181-203
MSC (2010):
Primary 14-02, 11-02, 14F42, 14C25
DOI:
https://doi.org/10.1090/suga/443
Published electronically:
September 26, 2019
MathSciNet review:
4018217
Full-text PDF
References |
Similar Articles |
Additional Information
References
- Luca Barbieri-Viale and Bruno Kahn, On the derived category of 1-motives, Astérisque 381 (2016), xi+254 (English, with English and French summaries). MR 3545132
- Hyman Bass, Some problems in “classical” algebraic $K$-theory, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 3–73. Lecture Notes in Math., Vol. 342. MR 0409606
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238 (Russian). MR 760999
- A. A. Beĭlinson, Height pairing between algebraic cycles, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1–25. MR 923131, DOI https://doi.org/10.1007/BFb0078364
- Spencer Bloch, $K_{2}$ of Artinian $Q$-algebras, with application to algebraic cycles, Comm. Algebra 3 (1975), 405–428. MR 371891, DOI https://doi.org/10.1080/00927877508822053
- S. Bloch, Torsion algebraic cycles and a theorem of Roitman, Compositio Math. 39 (1979), no. 1, 107–127. MR 539002
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI https://doi.org/10.1016/0001-8708%2886%2990081-2
- Spencer Bloch, Algebraic cycles and the Beĭlinson conjectures, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 65–79. MR 860404, DOI https://doi.org/10.1090/conm/058.1/860404
- S. Bloch, The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994), no. 3, 537–568. MR 1269719
- Spencer Bloch and Kazuya Kato, $p$-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107–152. MR 849653
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496
- Christopher Deninger, Duality in the étale cohomology of one-dimensional proper schemes and generalizations, Math. Ann. 277 (1987), no. 3, 529–541. MR 891590, DOI https://doi.org/10.1007/BF01458330
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI https://doi.org/10.1007/BF01388432
- Eric M. Friedlander and Andrei Suslin, The spectral sequence relating algebraic $K$-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875 (English, with English and French summaries). MR 1949356, DOI https://doi.org/10.1016/S0012-9593%2802%2901109-6
- Eric M. Friedlander and Vladimir Voevodsky, Bivariant cycle cohomology, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 138–187. MR 1764201
- Thomas Geisser, Tate’s conjecture, algebraic cycles and rational $K$-theory in characteristic $p$, $K$-Theory 13 (1998), no. 2, 109–122. MR 1611623, DOI https://doi.org/10.1023/A%3A1007709804443
- Thomas Geisser, Motivic cohomology over Dedekind rings, Math. Z. 248 (2004), no. 4, 773–794. MR 2103541, DOI https://doi.org/10.1007/s00209-004-0680-x
- Thomas Geisser, Weil-étale cohomology over finite fields, Math. Ann. 330 (2004), no. 4, 665–692. MR 2102307, DOI https://doi.org/10.1007/s00208-004-0564-8
- Thomas Geisser, Motivic cohomology, $K$-theory and topological cyclic homology, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 193–234. MR 2181824, DOI https://doi.org/10.1007/3-540-27855-9_6
- Thomas Geisser, Arithmetic cohomology over finite fields and special values of $\zeta $-functions, Duke Math. J. 133 (2006), no. 1, 27–57. MR 2219269, DOI https://doi.org/10.1215/S0012-7094-06-13312-4
- Thomas Geisser, Parshin’s conjecture revisited, $K$-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 413–425. MR 2513342, DOI https://doi.org/10.4171/060-1/13
- Thomas Geisser, Arithmetic homology and an integral version of Kato’s conjecture, J. Reine Angew. Math. 644 (2010), 1–22. MR 2671773, DOI https://doi.org/10.1515/CRELLE.2010.050
- Thomas Geisser, Duality via cycle complexes, Ann. of Math. (2) 172 (2010), no. 2, 1095–1126. MR 2680487, DOI https://doi.org/10.4007/annals.2010.172.1095
- Thomas Geisser, On Suslin’s singular homology and cohomology, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 223–249. MR 2804255
- Thomas Geisser, Duality for $\Bbb Z$-constructible sheaves on curves over finite fields, Doc. Math. 17 (2012), 989–1002. MR 3007682
- Thomas Geisser, Finite generation conjectures for motivic cohomology theories over finite fields, Regulators, Contemp. Math., vol. 571, Amer. Math. Soc., Providence, RI, 2012, pp. 153–165. MR 2953413, DOI https://doi.org/10.1090/conm/571/11326
- Thomas Geisser, Homological descent for motivic homology theories, Homology Homotopy Appl. 16 (2014), no. 2, 33–43. MR 3226920, DOI https://doi.org/10.4310/HHA.2014.v16.n2.a2
- Thomas Geisser, Rojtman’s theorem for normal schemes, Math. Res. Lett. 22 (2015), no. 4, 1129–1144. MR 3391879, DOI https://doi.org/10.4310/MRL.2015.v22.n4.a8
- Thomas Geisser and Marc Levine, The $K$-theory of fields in characteristic $p$, Invent. Math. 139 (2000), no. 3, 459–493. MR 1738056, DOI https://doi.org/10.1007/s002220050014
- Thomas Geisser and Marc Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math. 530 (2001), 55–103. MR 1807268, DOI https://doi.org/10.1515/crll.2001.006
- Thomas Geisser and Alexander Schmidt, Tame class field theory for singular varieties over algebraically closed fields, Doc. Math. 21 (2016), 91–123. MR 3465109
- Thomas Geisser and Alexander Schmidt, Tame class field theory for singular varieties over finite fields, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 11, 3467–3488. MR 3713046, DOI https://doi.org/10.4171/JEMS/744
- Henri Gillet, Gersten’s conjecture for the $K$-theory with torsion coefficients of a discrete valuation ring, J. Algebra 103 (1986), no. 1, 377–380. MR 860713, DOI https://doi.org/10.1016/0021-8693%2886%2990193-6
- Alexander Grothendieck, Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, Institut des Hautes Études Scientifiques, Paris, 1963. Troisième édition, corrigée; Séminaire de Géométrie Algébrique, 1960/61. MR 0217087
- Alexander Grothendieck, Schémas en groupes II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique de Bois Marie 1962/64 (SGA 3), vol. 152, Springer-Verlag Berlin Heidelberg, 1970.
- Uwe Jannsen, Hasse principles for higher-dimensional fields, Ann. of Math. (2) 183 (2016), no. 1, 1–71. MR 3432580, DOI https://doi.org/10.4007/annals.2016.183.1.1
- Uwe Jannsen and Shuji Saito, Kato homology and motivic cohomology over finite fields, arXiv preprint math/, ArXiv preprint 0910.2815.
- Uwe Jannsen and Shuji Saito, Kato homology of arithmetic schemes and higher class field theory over local fields, Doc. Math. Extra Vol. (2003), 479–538. Kazuya Kato’s fiftieth birthday. MR 2046606
- Bruno Kahn, $K$-theory of semi-local rings with finite coefficients and étale cohomology, $K$-Theory 25 (2002), no. 2, 99–138. MR 1906669, DOI https://doi.org/10.1023/A%3A1015608422475
- Bruno Kahn, Algebraic $K$-theory, algebraic cycles and arithmetic geometry, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 351–428. MR 2181827, DOI https://doi.org/10.1007/3-540-27855-9_9
- Bruno Kahn, Sur le groupe des classes d’un schéma arithmétique, Bull. Soc. Math. France 134 (2006), no. 3, 395–415 (French, with English and French summaries). With an appendix by Marc Hindry. MR 2245999, DOI https://doi.org/10.24033/bsmf.2515
- Kazuya Kato, Algebraic $K$-theory: its number-theoretic aspects, Sūgaku 34 (1982), no. 2, 97–115 (Japanese). MR 678763
- Kazuya Kato, A Hasse principle for two-dimensional global fields, J. Reine Angew. Math. 366 (1986), 142–183. With an appendix by Jean-Louis Colliot-Thélène. MR 833016, DOI https://doi.org/10.1515/crll.1986.366.142
- Kazuya Kato, A generalization of class field theory, Sūgaku 40 (1988), no. 4, 289–311 (Japanese). MR 1002305
- Kazuya Kato and Shuji Saito, Unramified class field theory of arithmetical surfaces, Ann. of Math. (2) 118 (1983), no. 2, 241–275. MR 717824, DOI https://doi.org/10.2307/2007029
- Moritz Kerz and Shuji Saito, Cohomological Hasse principle and motivic cohomology for arithmetic schemes, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 123–183. MR 2929729, DOI https://doi.org/10.1007/s10240-011-0038-y
- Serge Lang, Unramified class field theory over function fields in several variables, Ann. of Math. (2) 64 (1956), 285–325. MR 83174, DOI https://doi.org/10.2307/1969975
- Marc Levine, $K$-theory and motivic cohomology of schemes, K-theory Preprint Archives 336.
- Marc Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363. MR 1811558
- Marc Levine, The homotopy coniveau tower, J. Topol. 1 (2008), no. 1, 217–267. MR 2365658, DOI https://doi.org/10.1112/jtopol/jtm004
- S. Lichtenbaum, Values of zeta-functions at nonnegative integers, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 127–138. MR 756089, DOI https://doi.org/10.1007/BFb0099447
- S. Lichtenbaum, The Weil-étale topology on schemes over finite fields, Compos. Math. 141 (2005), no. 3, 689–702. MR 2135283, DOI https://doi.org/10.1112/S0010437X04001150
- Kazuya Matsumi, Kanetomo Sato, and Masanori Asakura, On the kernel of the reciprocity map of normal surfaces over finite fields, $K$-Theory 18 (1999), no. 3, 203–234. MR 1722795, DOI https://doi.org/10.1023/A%3A1007828326624
- Carlo Mazza, Vladimir Voevodsky, and Charles Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. MR 2242284
- J. S. Milne, Zero cycles on algebraic varieties in nonzero characteristic: Rojtman’s theorem, Compositio Math. 47 (1982), no. 3, 271–287. MR 681610
- J. S. Milne, Values of zeta functions of varieties over finite fields, Amer. J. Math. 108 (1986), no. 2, 297–360. MR 833360, DOI https://doi.org/10.2307/2374676
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- John Milnor, Algebraic $K$-theory and quadratic forms, Invent. Math. 9 (1969/70), 318–344. MR 260844, DOI https://doi.org/10.1007/BF01425486
- Thomas Moser, A duality theorem for étale $p$-torsion sheaves on complete varieties over a finite field, Compositio Math. 117 (1999), no. 2, 123–152. MR 1695861, DOI https://doi.org/10.1023/A%3A1000892524712
- D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204. MR 249428, DOI https://doi.org/10.1215/kjm/1250523940
- Enric Nart, The Bloch complex in codimension one and arithmetic duality, J. Number Theory 32 (1989), no. 3, 321–331. MR 1006598, DOI https://doi.org/10.1016/0022-314X%2889%2990088-7
- Yu. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring, and Milnor’s $K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 121–146 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 121–145. MR 992981, DOI https://doi.org/10.1070/IM1990v034n01ABEH000610
- D. Orlov, A. Vishik, and V. Voevodsky, An exact sequence for $K^M_\ast /2$ with applications to quadratic forms, Ann. of Math. (2) 165 (2007), no. 1, 1–13. MR 2276765, DOI https://doi.org/10.4007/annals.2007.165.1
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
- A. A. Rojtman, The torsion of the group of $0$-cycles modulo rational equivalence, Ann. of Math. (2) 111 (1980), no. 3, 553–569. MR 577137, DOI https://doi.org/10.2307/1971109
- Peter Roquette, Einheiten und Divisorklassen in endlich erzeugbaren Körpern, Jber. Deutsch. Math.-Verein. 60 (1957), no. Abt. 1, 1–21 (German). MR 104652
- Shūji Sait\B{o}, Algebraic cycles and Hodge theory (about higher dimensionalization of abelian theory), Sūgaku 49 (1997), no. 2, 113–120 (Japanese). MR 1476655
- Alexander Schmidt, Singular homology of arithmetic schemes, Algebra Number Theory 1 (2007), no. 2, 183–222. MR 2361940, DOI https://doi.org/10.2140/ant.2007.1.183
- Alexander Schmidt and Michael Spieß, Singular homology and class field theory of varieties over finite fields, J. Reine Angew. Math. 527 (2000), 13–36. MR 1794016, DOI https://doi.org/10.1515/crll.2000.079
- Jean-Pierre Serre, Morphismes universels et variété d’albanese, Séminaire Claude Chevalley 4 (1958), 1–22.
- C. Soulé, Groupes de Chow et $K$-théorie de variétés sur un corps fini, Math. Ann. 268 (1984), no. 3, 317–345 (French). MR 751733, DOI https://doi.org/10.1007/BF01457062
- Christophe Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math. 37 (1985), no. 3, 488–550 (French). MR 787114, DOI https://doi.org/10.4153/CJM-1985-029-x
- Michael Spieß, Artin-Verdier duality for arithmetic surfaces, Math. Ann. 305 (1996), no. 4, 705–792. MR 1399713, DOI https://doi.org/10.1007/BF01444246
- Michael Spieß and Tamás Szamuely, On the Albanese map for smooth quasi-projective varieties, Math. Ann. 325 (2003), no. 1, 1–17. MR 1957261, DOI https://doi.org/10.1007/s00208-002-0359-8
- A. A. Suslin, Algebraic $K$-theory of fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 222–244. MR 934225
- Andrei A. Suslin, Higher Chow groups and etale cohomology, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 239–254. MR 1764203
- A. Suslin, On the Grayson spectral sequence, Tr. Mat. Inst. Steklova 241 (2003), no. Teor. Chisel, Algebra i Algebr. Geom., 218–253; English transl., Proc. Steklov Inst. Math. 2(241) (2003), 202–237. MR 2024054
- Andrei Suslin and Seva Joukhovitski, Norm varieties, J. Pure Appl. Algebra 206 (2006), no. 1-2, 245–276. MR 2220090, DOI https://doi.org/10.1016/j.jpaa.2005.12.012
- Andrei Suslin and Vladimir Voevodsky, Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, 61–94. MR 1376246, DOI https://doi.org/10.1007/BF01232367
- Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117–189. MR 1744945
- Yuichiro Takeda, On Voevodsky’s construction of the category of mixed motives [translation of Sūgaku 53 (2001), no. 1, 1–17; MR1816980], Sugaku Expositions 16 (2003), no. 2, 207–224. Sugaku Expositions. MR 2019171
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 206004, DOI https://doi.org/10.1007/BF01404549
- John Tate, Conjectures on algebraic cycles in $l$-adic cohomology, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 71–83. MR 1265523, DOI https://doi.org/10.1090/pspum/055.1/1265523
- John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778
- Burt Totaro, Milnor $K$-theory is the simplest part of algebraic $K$-theory, $K$-Theory 6 (1992), no. 2, 177–189. MR 1187705, DOI https://doi.org/10.1007/BF01771011
- Vladimir Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 7 (2002), 351–355. MR 1883180, DOI https://doi.org/10.1155/S107379280210403X
- Vladimir Voevodsky, On motivic cohomology with $\mathbf Z/l$-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603, DOI https://doi.org/10.4007/annals.2011.174.1.11
- Changlong Zhong, Comparison of dualizing complexes, J. Reine Angew. Math. 695 (2014), 1–39. MR 3276153, DOI https://doi.org/10.1515/crelle-2012-0088
References
- Luca Barbieri-Viale and Bruno Kahn, On the derived category of 1-motives, Astérisque No. 381 (2016), 254 pp. MR 3545132
- Hyman Bass, Some problems in “classical” algebraic $K$-theory, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 3–73. Lecture Notes in Math., Vol. 342. MR 0409606 (53 \#13358)
- Aleksandr A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238. MR 760999
- Aleksandr A. Beĭlinson, Height pairing between algebraic cycles, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1–25. MR 923131
- Spencer Bloch, $K_{2}$ of Artinian $Q$-algebras, with application to algebraic cycles, Comm. Algebra 3 (1975), 405–428. MR 0371891
- Spencer Bloch, Torsion algebraic cycles and a theorem of Roitman, Compositio Math. 39 (1979), no. 1, 107–127. MR 539002
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815
- Spencer Bloch, Algebraic cycles and the Beĭlinson conjectures, The Lefschetz centennial conference, Part I (Mexico City, 1984), Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 65–79. MR 860404
- Spencer Bloch, The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994), no. 3, 537–568. MR 1269719
- Spencer Bloch and Kazuya Kato, $p$-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. (1986), no. 63, 107–152. MR 849653
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 0387496
- Christopher Deninger, Duality in the étale cohomology of one-dimensional proper schemes and generalizations, Math. Ann. 277 (1987), no. 3, 529–541. MR 891590
- Gerd Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366. MR 718935
- Eric M. Friedlander and Andrei Suslin, The spectral sequence relating algebraic $K$-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875. MR 1949356
- Eric M. Friedlander and Vladimir Voevodsky, Bivariant cycle cohomology, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 138–187. MR 1764201
- Thomas Geisser, Tate’s conjecture, algebraic cycles and rational $K$-theory in characteristic $p$, $K$-Theory 13 (1998), no. 2, 109–122. MR 1611623
- Thomas Geisser, Motivic cohomology over Dedekind rings, Math. Z. 248 (2004), no. 4, 773–794. MR 2103541
- Thomas Geisser, Weil-étale cohomology over finite fields, Math. Ann. 330 (2004), no. 4, 665–692. MR 2102307
- Thomas Geisser, Motivic cohomology, $K$-theory and topological cyclic homology, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 193–234. MR 2181824 (2006j:14025)
- Thomas Geisser, Arithmetic cohomology over finite fields and special values of $\zeta$-functions, Duke Math. J. 133 (2006), no. 1, 27–57. MR 2219269
- Thomas Geisser, Parshin’s conjecture revisited, $K$-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 413–425. MR 2513342
- Thomas Geisser, Arithmetic homology and an integral version of Kato’s conjecture, J. Reine Angew. Math. 644 (2010), 1–22. MR 2671773
- Thomas Geisser, Duality via cycle complexes, Ann. of Math. (2) 172 (2010), no. 2, 1095–1126. MR 2680487
- Thomas Geisser, On Suslin’s singular homology and cohomology, Doc. Math. (2010), no. Extra volume: Andrei A. Suslin sixtieth birthday, 223–249. MR 2804255 (2012d:19004)
- Thomas Geisser, Duality for $\Bbb Z$-constructible sheaves on curves over finite fields, Doc. Math. 17 (2012), 989–1002. MR 3007682
- Thomas Geisser, Finite generation conjectures for motivic cohomology theories over finite fields, Regulators, Contemp. Math., vol. 571, Amer. Math. Soc., Providence, RI, 2012, pp. 153–165. MR 2953413
- Thomas Geisser, Homological descent for motivic homology theories, Homology Homotopy Appl. 16 (2014), no. 2, 33–43. MR 3226920
- Thomas Geisser, Rojtman’s theorem for normal schemes, Math. Res. Lett. 22 (2015), no. 4, 1129–1144. MR 3391879
- Thomas Geisser and Marc Levine, The $K$-theory of fields in characteristic $p$, Invent. Math. 139 (2000), no. 3, 459–493. MR 1738056
- Thomas Geisser and Marc Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math. 530 (2001), 55–103. MR 1807268
- Thomas Geisser and Alexander Schmidt, Tame class field theory for singular varieties over algebraically closed fields, Doc. Math. 21 (2016), 91–123. MR 3465109
- Thomas Geisser and Alexander Schmidt, Tame class field theory for singular varieties over finite fields, J. Eur. Soc. (JEMS) 19 (2017), no. 11, 3467–3488. MR 3713046
- Henri Gillet, Gersten’s conjecture for the $K$-theory with torsion coefficients of a discrete valuation ring, J. Algebra 103 (1986), no. 1, 377–380. MR 860713
- Alexander Grothendiek, Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique de Bois Marie 1960–1961 (SGA 1), vol. 224, Institut des Hautes Études Scientifiques, Paris, 1971. MR 0217087 (36 \#179a)
- Alexander Grothendieck, Schémas en groupes II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique de Bois Marie 1962/64 (SGA 3), vol. 152, Springer-Verlag Berlin Heidelberg, 1970.
- Uwe Jannsen, Hasse principles for higher-dimensional fields, Ann. of Math. (2) 183 (2016), no. 1, 1–71. MR 3432580
- Uwe Jannsen and Shuji Saito, Kato homology and motivic cohomology over finite fields, arXiv preprint math/, ArXiv preprint 0910.2815.
- Uwe Jannsen and Shuji Saito, Kato homology of arithmetic schemes and higher class field theory over local fields, Doc. Math. (2003), no. Extra Vol., 479–538 (electronic), Kazuya Kato’s fiftieth birthday. MR 2046606 (2005c:11087)
- Bruno Kahn, $K$-theory of semi-local rings with finite coefficients and étale cohomology, $K$-Theory 25 (2002), no. 2, 99–138. MR 1906669
- Bruno Kahn, Algebraic $K$-theory, algebraic cycles and arithmetic geometry, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 351–428. MR 2181827 (2007b:14016)
- Bruno Kahn, Sur le groupe des classes d’un schéma arithmétique, Bull. Soc. Math. France 134 (2006), no. 3, 395–415, With an appendix by Marc Hindry. MR 2245999
- Kazuya Kato, Algebraic $K$-theory: its number-theoretic aspects, Sûgaku 34 (1982), no. 2, 97–115. MR 678763
- Kazuya Kato, A Hasse principle for two-dimensional global fields, J. Reine Angew. Math. 366 (1986), 142–183, With an appendix by Jean-Louis Colliot-Thélène. MR 833016
- Kazuya Kato, A generalization of class field theory, Sūgaku 40 (1988), no. 4, 289–311. MR 1002305
- Kazuya Kato and Shuji Saito, Unramified class field theory of arithmetical surfaces, Ann. of Math. (2) 118 (1983), no. 2, 241–275. MR 717824
- Moritz Kerz and Shuji Saito, Cohomological Hasse principle and motivic cohomology for arithmetic schemes, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 123–183. MR 2929729
- Serge Lang, Unramified class field theory over function fields in several variables, Ann. of Math. (2) 64 (1956), 285–325. MR 0083174
- Marc Levine, $K$-theory and motivic cohomology of schemes, K-theory Preprint Archives 336.
- Marc Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363. MR 1811558
- Marc Levine, The homotopy coniveau tower, J. Topol. 1 (2008), no. 1, 217–267. MR 2365658
- Stephen Lichtenbaum, Values of zeta-functions at nonnegative integers, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 127–138. MR 756089
- Stephen Lichtenbaum, The Weil-étale topology on schemes over finite fields, Compos. Math. 141 (2005), no. 3, 689–702. MR 2135283
- Kazuya Matsumi, Kanetomo Sato, and Masanori Asakura, On the kernel of the reciprocity map of normal surfaces over finite fields, $K$-Theory 18 (1999), no. 3, 203–234. MR 1722795
- Carlo Mazza, Vladimir Voevodsky, and Charles Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006. MR 2242284
- James S. Milne, Zero cycles on algebraic varieties in nonzero characteristic: Rojtman’s theorem, Compositio Math. 47 (1982), no. 3, 271–287. MR 681610
- James S. Milne, Values of zeta functions of varieties over finite fields, Amer. J. Math. 108 (1986), no. 2, 297–360. MR 833360
- James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- John Milnor, Algebraic $K$-theory and quadratic forms, Invent. Math. 9 (1969/1970), 318–344. MR 0260844
- Thomas Moser, A duality theorem for étale $p$-torsion sheaves on complete varieties over a finite field, Compositio Math. 117 (1999), no. 2, 123–152. MR 1695861
- David Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204. MR 0249428
- Enric Nart, The Bloch complex in codimension one and arithmetic duality, J. Number Theory 32 (1989), no. 3, 321–331. MR 1006598
- Yu. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a local ring, and Milnor’s $K$-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 121–146. MR 992981
- Dmitri Orlov, Alexander Vishik, and Vladimir Voevodsky, An exact sequence for $K^M_\ast /2$ with applications to quadratic forms, Ann. of Math. (2) 165 (2007), no. 1, 1–13. MR 2276765
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129 (49 \#2895)
- A. A. Rojtman, The torsion of the group of $0$-cycles modulo rational equivalence, Ann. of Math. (2) 111 (1980), no. 3, 553–569. MR 577137
- Peter Roquette, Einheiten und Divisorklassen in endlich erzeugbaren Körpern, Jber. Deutsch. Math. Verein 60 (1957), no. Abt. 1, 1–21. MR 0104652
- Shūji Saitō, Algebraic cycles and Hodge theory (about higher dimensionalization of abelian theory), Sūgaku 49 (1997), no. 2, 113–120. MR 1476655
- Alexander Schmidt, Singular homology of arithmetic schemes, Algebra Number Theory 1 (2007), no. 2, 183–222. MR 2361940
- Alexander Schmidt and Michael Spieß, Singular homology and class field theory of varieties over finite fields, J. Reine Angew. Math. 527 (2000), 13–36. MR 1794016
- Jean-Pierre Serre, Morphismes universels et variété d’albanese, Séminaire Claude Chevalley 4 (1958), 1–22.
- Christophe Soulé, Groupes de Chow et $K$-théorie de variétés sur un corps fini, Math. Ann. 268 (1984), no. 3, 317–345. MR 751733
- Christophe Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math. 37 (1985), no. 3, 488–550. MR 787114
- Michael Spieß, Artin-Verdier duality for arithmetic surfaces, Math. Ann. 305 (1996), no. 4, 705–792. MR 1399713
- Michael Spieß and Tamás Szamuely, On the Albanese map for smooth quasi-projective varieties, Math. Ann. 325 (2003), no. 1, 1–17. MR 1957261
- Andrei A. Suslin, Algebraic $K$-theory of fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 222–244. MR 934225 (89k:12010)
- Andrei A. Suslin, Higher Chow groups and etale cohomology, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 239–254. MR 1764203
- Andrei A. Suslin, On the Grayson spectral sequence, Tr. Mat. Inst. Steklova 241 (2003), no. Teor. Chisel, Algebra i Algebr. Geom., 218–253. MR 2024054
- Andrei A. Suslin and Seva Joukhovitski, Norm varieties, J. Pure Appl. Algebra 206 (2006), no. 1-2, 245–276. MR 2220090
- Andrei A. Suslin and Vladimir Voevodsky, Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, 61–94. MR 1376246
- Andrei A. Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117–189. MR 1744945
- Yuichiro Takeda, On Voevodsky’s construction of the category of mixed motives [translation of Sūgaku 53 (2001), no. 1, 1–17], Sugaku Expositions 16 (2003), no. 2, 207–224, Sugaku Expositions. MR 2019171
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 0206004
- John Tate, Conjectures on algebraic cycles in $l$-adic cohomology, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 71–83. MR 1265523 (95a:14010)
- John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, New York, 1965, pp. 93–110. MR 0225778
- Burt Totaro, Milnor $K$-theory is the simplest part of algebraic $K$-theory, $K$-Theory 6 (1992), no. 2, 177–189. MR 1187705
- Vladimir Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002), no. 7, 351–355. MR 1883180
- Vladimir Voevodsky, On motivic cohomology with $\mathbf {Z}/l$-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603
- Changlong Zhong, Comparison of dualizing complexes, J. Reine Angew. Math. 695 (2014), 1–39. MR 3276153
Similar Articles
Retrieve articles in Sugaku Expositions
with MSC (2010):
14-02,
11-02,
14F42,
14C25
Retrieve articles in all journals
with MSC (2010):
14-02,
11-02,
14F42,
14C25
Additional Information
Published electronically:
September 26, 2019
Article copyright:
© Copyright 2019
American Mathematical Society