The Erdös-Rényi law for renewal processes
Author:
A. N. Frolov
Translated by:
The author
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 68 (2003).
Journal:
Theor. Probability and Math. Statist. 68 (2004), 157-166
MSC (2000):
Primary 60F15; Secondary 60K05
DOI:
https://doi.org/10.1090/S0094-9000-04-00593-9
Published electronically:
May 11, 2004
MathSciNet review:
2000645
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Erdös-Rényi law and strong law of large numbers are proved for renewal processes constructed from nonidentically distributed random variables.
- 1. A. A. Borovkov, Teoriya veroyatnosteĭ, 2nd ed., “Nauka”, Moscow, 1986 (Russian). MR 891184
- 2. B. V. Gnedenko, Kurs teorii veroyatnosteĭ, Third edition, revised, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). MR 0139186
- 3. William Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- 4. Allan Gut, Stopped random walks, Applied Probability. A Series of the Applied Probability Trust, vol. 5, Springer-Verlag, New York, 1988. Limit theorems and applications. MR 916870
- 5. Allan Gut, Oleg Klesov, and Josef Steinebach, Equivalences in strong limit theorems for renewal counting processes, Statist. Probab. Lett. 35 (1997), no. 4, 381–394. MR 1483025, https://doi.org/10.1016/S0167-7152(97)00036-9
- 6. A. Frolov, A. Martikainen, and J. Steinebach, Limit theorems for maxima of sums and renewal processes, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 278 (2001), no. Veroyatn. i Stat. 4, 261–274, 314–315 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 118 (2003), no. 6, 5658–5666. MR 1874378, https://doi.org/10.1023/A:1026107009944
- 7. Paul Erdős and Alfréd Rényi, On a new law of large numbers, J. Analyse Math. 23 (1970), 103–111. MR 272026, https://doi.org/10.1007/BF02795493
- 8. J. Steinebach, Improved Erdős-Rényi and strong approximation laws for increments of renewal processes, Ann. Probab. 14 (1986), no. 2, 547–559. MR 832023
- 9. Paul Deheuvels and Josef Steinebach, Sharp rates for increments of renewal processes, Ann. Probab. 17 (1989), no. 2, 700–722. MR 985385
- 10. Jean-Noël Bacro, Paul Deheuvels, and Josef Steinebach, Exact convergence rates in Erdős-Rényi type theorems for renewal processes, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, 195–207 (English, with French summary). MR 891710
- 11. Josef Steinebach, Strong laws for small increments of renewal processes, Ann. Probab. 19 (1991), no. 4, 1768–1776. MR 1127726
- 12. V. V. Petrov, On the probabilities of large deviations for sums of independent random variables, Teor. Verojatnost. i Primenen 10 (1965), 310–322 (Russian, with English summary). MR 0185645
- 13. Paul Deheuvels, Luc Devroye, and James Lynch, Exact convergence rate in the limit theorems of Erdős-Rényi and Shepp, Ann. Probab. 14 (1986), no. 1, 209–223. MR 815966
- 14. A. Frolov, A. Martikainen, and J. Steinebach, Erdős-Rényi-Shepp type laws in the non-i.i.d. case, Studia Sci. Math. Hungar. 33 (1997), no. 1-3, 127–151. MR 1454106
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60F15, 60K05
Retrieve articles in all journals with MSC (2000): 60F15, 60K05
Additional Information
A. N. Frolov
Affiliation:
Department of Mathematics and Mechanics, St. Petersburg State University, Bibliotechnaya Pl. 2, Staryi Petergof, St. Petersburg 198904, Russia
Email:
Andrei.Frolov@pobox.spbu.ru
DOI:
https://doi.org/10.1090/S0094-9000-04-00593-9
Keywords:
Renewal processes,
increments,
Erd\"os--R\'enyi law of large numbers
Received by editor(s):
April 4, 2002
Published electronically:
May 11, 2004
Additional Notes:
Partially supported by RFFI, grant 02-01-00779, and Ministry of Education of the Russian Federation, grant E00-1.0-82
Article copyright:
© Copyright 2004
American Mathematical Society