Catalytic branching random walk and queueing systems with random number of independent servers
Authors:
V. A. Vatutin, V. A. Topchii and E. B. Yarovaya
Translated by:
The authors
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 69 (2003).
Journal:
Theor. Probability and Math. Statist. 69 (2004), 1-15
MSC (2000):
Primary 60J80, 60J15; Secondary 60K25, 60K05
DOI:
https://doi.org/10.1090/S0094-9000-05-00609-5
Published electronically:
February 7, 2005
MathSciNet review:
2110900
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A continuous time branching random walk on the lattice in which particles may produce children only at the origin is considered. Assuming that the underlying random walk is symmetric and the offspring reproduction law is critical, we find the asymptotic behavior of the survival probability of the process at time
as
and the probability that the number of particles at the origin at time
is positive. We also prove a Yaglom type conditional limit theorem for the total number of particles existing at time
. A relation between the model considered and a queueing system with a random number of independently operating servers is discussed.
- 1. Sergio Albeverio and Leonid V. Bogachev, Branching random walk in a catalytic medium. I. Basic equations, Positivity 4 (2000), no. 1, 41–100. MR 1740207, https://doi.org/10.1023/A:1009818620550
- 2. Sergio Albeverio, Leonid V. Bogachev, and Elena B. Yarovaya, Asymptotics of branching symmetric random walk on the lattice with a single source, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 8, 975–980 (English, with English and French summaries). MR 1649878, https://doi.org/10.1016/S0764-4442(98)80125-0
- 3. Krishna B. Athreya and Peter E. Ney, Branching processes, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 196. MR 0373040
- 4. L. V. Bogachev and E. B. Yarovaya, A limit theorem for a supercritical branching random walk on 𝑍^{𝑑} with a single source, Uspekhi Mat. Nauk 53 (1998), no. 5(323), 229–230 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 5, 1086–1088. MR 1691192, https://doi.org/10.1070/rm1998v053n05ABEH000077
- 5. L. V. Bogachev and E. B. Yarovaya, Moment analysis of a branching random walk on a lattice with a single source, Dokl. Akad. Nauk 363 (1998), no. 4, 439–442 (Russian). MR 1702745
- 6. Donald A. Dawson and Klaus Fleischmann, Longtime behavior of a branching process controlled by branching catalysts, Stochastic Process. Appl. 71 (1997), no. 2, 241–257. MR 1484162, https://doi.org/10.1016/S0304-4149(97)00076-8
- 7. William Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- 8. Klaus Fleischmann, Superprocesses in catalytic media, Measure-valued processes, stochastic partial differential equations, and interacting systems (Montreal, PQ, 1992) CRM Proc. Lecture Notes, vol. 5, Amer. Math. Soc., Providence, RI, 1994, pp. 99–110. MR 1278286
- 9. Klaus Fleischmann and Jean-François Le Gall, A new approach to the single point catalytic super-Brownian motion, Probab. Theory Related Fields 102 (1995), no. 1, 63–82. MR 1351711, https://doi.org/10.1007/BF01295222
- 10. F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697
- 11. B. A. Sewastjanow, Verzweigungsprozesse, Akademie-Verlag, Berlin, 1974. Übersetzt aus dem Russischen von Walter Warmuth; Mathematische Lehrbücher und Monographien. II. Abteilung: Mathematische Monographien, Band 34. MR 0408018
- 12. V. A. Vatutin, Discrete limit distributions of the number of particles in a multitype Bellman-Harris branching process, Teor. Veroyatnost. i Primenen. 24 (1979), no. 3, 503–514 (Russian, with English summary). MR 541363
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60J80, 60J15, 60K25, 60K05
Retrieve articles in all journals with MSC (2000): 60J80, 60J15, 60K25, 60K05
Additional Information
V. A. Vatutin
Affiliation:
Steklov Mathematical Institute, Gubkina Street 8, 117966, GSP-1 Moscow, Russia
Email:
vatutin@mi.ras.ru
V. A. Topchii
Affiliation:
Omsk Branch of Sobolev Institute of Mathematics, Pevtsova Street 13, 644099 Omsk, Russia
Email:
topchij@iitam.omsk.net.ru
E. B. Yarovaya
Affiliation:
Faculty of Mathematics and Mechanics, Moscow State University, 119992, GSP-2 Moscow, Russia
Email:
yarov@cardpl.msk.ru
DOI:
https://doi.org/10.1090/S0094-9000-05-00609-5
Received by editor(s):
February 24, 2003
Published electronically:
February 7, 2005
Additional Notes:
Supported by the RFBR grants 02-01-00266, 00-15-96136 and the INTAS grants 99-01317, 00-0265.
Article copyright:
© Copyright 2005
American Mathematical Society