On the weak convergence of extremes in some Banach spaces
Author:
I. K. Matsak
Translated by:
V. Semenov
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 69 (2003).
Journal:
Theor. Probability and Math. Statist. 69 (2004), 141-152
MSC (2000):
Primary 60B12
DOI:
https://doi.org/10.1090/S0094-9000-05-00621-6
Published electronically:
February 9, 2005
MathSciNet review:
2110912
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The weak convergence of random elements

is studied for Banach spaces with an unconditional basis, where




- 1. B. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire, Ann. of Math. (2) 44 (1943), 423–453 (French). MR 8655, https://doi.org/10.2307/1968974
- 2. Janos Galambos, The asymptotic theory of extreme order statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1978. Wiley Series in Probability and Mathematical Statistics. MR 489334
- 3. M. R. Leadbetter, Georg Lindgren, and Holger Rootzén, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York-Berlin, 1983. MR 691492
- 4. Ī. K. Matsak, Weak convergence of extreme values of independent random elements in Banach spaces with an unconditional basis, Ukraïn. Mat. Zh. 48 (1996), no. 6, 805–812 (Ukrainian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 48 (1996), no. 6, 905–913 (1997). MR 1418157, https://doi.org/10.1007/BF02384175
- 5. Ī. K. Matsak, On integral functionals of extremal random functions, Teor. Ĭmovīr. Mat. Stat. 65 (2001), 110–120 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 65 (2002), 123–134. MR 1936135
- 6. Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- 7. Jean Geffroy, Contribution à la théorie des valeurs extrêmes, Publ. Inst. Statist. Univ. Paris 7 (1958), no. 3-4, 37–121 (French). MR 105168
- 8. Contributions to order statistics, Edited by Ahmed E. Sarhan and Bernard G. Greenberg, John Wiley & Sons, Inc., New York-London, 1962. MR 0169336
- 9. Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
- 10. J. Galambos and E. Seneta, Regularly varying sequences, Proc. Amer. Math. Soc. 41 (1973), 110–116. MR 323963, https://doi.org/10.1090/S0002-9939-1973-0323963-5
- 11. N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, “Nauka”, Moscow, 1985 (Russian). MR 787803
- 12. Ī. K. Matsak and A. M. Plīchko, On the maxima of independent random elements in a Banach functional lattice, Teor. Ĭmovīr. Mat. Stat. 61 (1999), 105–116 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 61 (2000), 109–120 (2001). MR 1866964
- 13. James Pickands III, Moment convergence of sample extremes, Ann. Math. Statist. 39 (1968), 881–889. MR 224231, https://doi.org/10.1214/aoms/1177698320
- 14. S. A. Chobanjan and V. I. Tarieladze, Gaussian characterizations of certain Banach spaces, J. Multivariate Anal. 7 (1977), no. 1, 183–203. MR 433572, https://doi.org/10.1016/0047-259X(77)90038-0
- 15. Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968. MR 0254888
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60B12
Retrieve articles in all journals with MSC (2000): 60B12
Additional Information
I. K. Matsak
Affiliation:
Kyiv National University of Technology and Design, Nemyrovych-Danchenko Street 2, Kyiv 02011, Ukraine
Email:
infor1@vtv.kiev.ua
DOI:
https://doi.org/10.1090/S0094-9000-05-00621-6
Received by editor(s):
June 26, 2002
Published electronically:
February 9, 2005
Article copyright:
© Copyright 2005
American Mathematical Society