ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT

UDC 519.21

A. V. MELNIKOV AND M. L. NECHAEV

Abstract. The paper deals with the problem of pricing an equity-linked insurance contract based on stock prices. The stock prices are supposed to follow a stochastic exponent model with respect to a given Gaussian martingale. The model gives a possibility to obtain unified formulas for “mean–variance” hedging and the corresponding premium for both natural cases: Black–Scholes and Gaussian discrete time models.

1. Introduction

Suppose that an insurance company has a portfolio of \(l \) insurance contracts. Any contract is associated with a random time \(\tau_i, \ i = 1, \ldots, l \), which indicates the time of incident occurrence. The corresponding premiums should be distributed between financial assets to guarantee the best correspondence between liabilities of the company and its capital \(V^\pi \). As a criterion of the quality of a financial portfolio \(\pi \) we shall use the mean variance distance

\[
E[(V^\pi_T - f_T)^2],
\]

where \(f_T \) represents the claim that should be paid by the company at the terminal time \(T \).

The insurance contract based on the market’s price of a given asset \(S_t \) is called an equity-linked life insurance contract. An appropriate description of such a contract was given, for instance, in [3], in the framework of the Black–Scholes model for \(S_t \). This paper is devoted to the pricing of such insurance contracts and in a more general case of a financial market driven by Gaussian martingale.

2. Financial market and insurance portfolio

Suppose the company invests in the \((B, S) \)-market with two traded assets: bank account \(B_t \equiv 1 \) and stock \(S_t \),

\[
S_t = S_0 \exp \left\{ Y_t - \frac{1}{2} \langle Y \rangle_t \right\},
\]

where \(Y_t \) is the right continuous Gaussian martingale (see [2]) on a given stochastic basis \((\Omega^1, \mathcal{F}^1, \mathbb{P}^1, \mathbb{F}^1) \) with filtration \(\mathbb{F}^1 \) generated by \(Y \).

2000 Mathematics Subject Classification. Primary 60H30; Secondary 91B28, 91B30.

Key words and phrases. Hedging, \((B, S) \)-market, contingent claim, insurance liabilities, insurance premiums and claims.

This paper was partially supported by grants of NSERC and SSHRC.
Any self-financing trading strategy \(\pi = (\beta, \gamma) \) can be determined by its capital

\[
V_t^\pi = V_0^\pi + \int_0^t \gamma_u dS_u,
\]

where \(\gamma_t \) is the number of stocks in the portfolio at time \(t \) (see [1]). The number of bank account units \(\beta \) can be identified from the balance equation

\[
V_t = \gamma_t S_t + \beta_t.
\]

Using the martingale convergence theorem [2] we can conclude that

\[
\text{following expression for the capital}
\]

\[
\text{where the Borel function}
\]

\[
\text{The Kolmogorov–Itô formula gives directly that}
\]

\[
\text{The maturity time of this contract will be denoted by} \ T.
\]

We also assume a pure technical condition: \(\Delta Y_T = 0 \). The corresponding contingent claim has the form \(f_T = f(S_T) \), where the Borel function \(f \) satisfies the following condition:

\[
f(x) \leq c \left(1 + x^{p_1} \right) x^{-p_2}, \quad c \geq 0, \ p_1 \geq 0, \ p_2 \geq 0, \ x \geq 0.
\]

In this case (see [1]) we can define the function

\[
F(u, x) = \frac{1}{\sqrt{2\pi \langle Y \rangle_T}} \int_{\mathbb{R}_+} \frac{f(z)}{z} \exp \left\{ -\frac{(\ln(x/z) + \frac{1}{2} \langle Y \rangle_T - u)^2}{2 \langle Y \rangle_T - u} \right\} \, dz.
\]

It is easy to prove that this function is twice continuously differentiable with respect to both argument \(u \) and \(x \) and admits the representation

\[
F(\langle Y \rangle_t, S_t) = \mathbb{E} \left[f(S_T) \mid F_t \right] \quad \text{for any } t < T.
\]

Using the martingale convergence theorem [2] we can conclude that

\[
F(\langle Y \rangle_T, S_T) = f(S_T).
\]

The Kolmogorov–Itô formula gives directly that

\[
F(\langle Y \rangle_t, S_t) = F(0, S_0) + \int_0^t F_x(\langle Y \rangle_u, S_u) S_u \, dY_u
\]

\[
+ \int_0^t F_u(\langle Y \rangle_u, S_u) S_u \, d(\langle Y \rangle_u)
\]

\[
+ \frac{1}{2} \int_0^t F_{xx}(\langle Y \rangle_u, S_u) S_u^2 \, d\langle Y \rangle_u
\]

\[
+ \sum_{u \leq t} \left\{ F(\langle Y \rangle_u, S_u) - F(\langle Y \rangle_u, S_u) - F_x(\langle Y \rangle_u, S_u) S_u \Delta Y_u
\]

\[
- F_u(\langle Y \rangle_u, S_u) S_u \Delta Y_u \right\},
\]

where \(F_x \), \(F_u \), and \(F_{xx} \) are the corresponding derivatives. Taking into account that the process \(F(\langle Y \rangle_t, S_t) \) should be a martingale, we can reduce (3) to the equality

\[
F(\langle Y \rangle_t, S_t) = F(0, S_0) + \int_0^t F_x(\langle Y \rangle_u, S_u) S_u \, dY_u
\]

\[
+ \sum_{u \leq t} \left\{ F(\langle Y \rangle_u, S_u) - F(\langle Y \rangle_u, S_u) - F_x(\langle Y \rangle_u, S_u) S_u \Delta Y_u \right\}.
\]

The insurance portfolio of \(l \) contracts can be characterized by random times

\[
\tau_i, \quad i = 1, \ldots, l,
\]
of incident occurrence and claim payment values. We shall assume that \(\tau_i \) are i.i.d.
random variables on some probability space \((\Omega^2, \mathcal{F}^2, P^2)\). The payment function \(g(\cdot)\) for
the contract indicates the value \(g(S_T)\) which should be paid if no incident occurs during
the insured period.

Suppose that the distribution of \(\tau_i \) admits the following representation:

\[
P^2(\tau \leq t) = 1 - \exp \left\{ - \int_0^t \mu_s \, ds \right\},
\]

where \(\mu \) is called a force of mortality. Denote \(I^k_t = I(\tau_k \leq t) \), and \(N_t = I^1_t + \cdots + I^k_t \).
The counting process \(N_t \) indicates the number of incidents on \([0, t]\). We shall equip
\((\Omega^2, \mathcal{F}^2, P^2)\) with a filtration \(\mathcal{F}^2 \) generated by \((N_t)_{t \geq 0} \). The process
\[
\int_0^t (l - N_s) \mu_s \, ds
\]
is a compensator of \(N_t \) and

\[
M_t = N_t - \int_0^t (l - N_s) \mu_s \, ds
\]
is a martingale with respect to \(\mathcal{F}^2 \).

3. Main results and examples

It is quite natural to think that the financial market and the lives of insured are
independent. Hence the general probability space for the model can be defined as a
product of \((\Omega, \mathcal{F}, P)\) and \((\Omega^2, \mathcal{F}^2, P^2)\) with the general filtration \(\mathcal{F} \) generated
by \(\mathcal{F}^1 \) and \(\mathcal{F}^2 \):

\[
\Omega = \Omega^1 \times \Omega^2, \quad \mathcal{F} = \mathcal{F}^1 \times \mathcal{F}^2, \quad P = P^1 \times P^2, \quad \mathcal{F} = \mathcal{F}^1 \times \mathcal{F}^2 = \{\mathcal{F}_t = \mathcal{F}^1_t \times \mathcal{F}^2_t \}_{t \geq 0}.
\]
The payment function of such a contract has the form

\[f_T = g(S_T)(l - N_T), \]

where the Borel function \(g(\cdot) \) satisfies the conditions mentioned above,

\[g(x) \leq c(1 + x^{p_1})x^{-p_2}, \quad c \geq 0, \quad p_1 \geq 0, \quad p_2 \geq 0, \quad x > 0. \]

To optimize its liabilities the company should choose an initial capital \(\hat{v} \) and a self-
financing trading strategy \(\hat{\pi} \) such that

\[\mathbb{E} \left[(V^\pi_T(v) - f_T)^2 \right] \leq \mathbb{E} \left[(V^\pi_T(v) - f_T)^2 \right]\]

for any \(v \) and any self-financing strategy \(\pi \).

Denote by

\[V^*_T = \mathbb{E}[f_T | \mathcal{F}_T] = \mathbb{E}[g(S_T)(l - N_T) | \mathcal{F}_T]\]

the so-called “tracking process” \(V^*_T \); using the independence of \(S \) and \(N \) we get

\[V^*_T = E^1 \left[g(S_T) | \mathcal{F}^1_T \right] E^2 \left[(l - N_T) | \mathcal{F}^2_T \right]. \]

It is easy to check that

\[E^2 \left[(l - N_T) | \mathcal{F}^2_T \right] = E^2 \left[\sum_{i=1}^l (1 - I_1(\tau_i \leq T)) | \mathcal{F}^2_T \right] = (l - N_{iTT}), \]

where \(i_{TT} = E^2[1 - I_{(t < \tau_i \leq T)} | \mathcal{F}^2_T] = \exp \left\{ - \int_0^T \mu_s \, ds \right\} \) is the probability of incident
occurrence after expiration date \(T \). Using the representation \[2\] we have

\[V^*_T = F(\langle Y \rangle_T, S_T)(l - N_T)_{iTT}. \]
Applying the Kolmogorov–Itô formula to the process \(V_t^* \) we obtain the integral representation

\[
V_t^* = V_0^* + \int_0^t (l - N_{u-}) dM_u dF((Y)_u, S_u) + \int_0^t F((Y)_u, S_u)(l - N_{u-}) dM_u du - \int_0^t F((Y)_u, S_u)(l - N_{u-}) dN_u
\]

\[
+ \sum_{u \leq t} \left[F((Y)_u, S_u)(l - N_{u-}) - F((Y)_u, S_u)(l - N_{u-}) \right] dM_u
\]

\[
+ \sum_{u \leq t} \left[F((Y)_u, S_u)(l - N_{u-}) - F((Y)_u, S_u)(l - N_{u-}) \right] dM_u
\]

\[
- (l - N_{u-}) \Delta F((Y)_u, S_u) + F((Y)_u, S_u) dM_u dN_u
\]

The equality (6) can be rewritten as

\[
V_t^* = V_0^* + \int_0^t (l - N_{u-}) dM_u dF((Y)_u, S_u) - \int_0^t F((Y)_u, S_u)(l - N_{u-}) dM_u du - \int_0^t F((Y)_u, S_u)(l - N_{u-}) dN_u
\]

\[
+ \sum_{u \leq t} \left[F((Y)_u, S_u)(l - N_{u-}) - F((Y)_u, S_u)(l - N_{u-}) \right] dM_u
\]

\[
- (l - N_{u-}) \Delta F((Y)_u, S_u) + F((Y)_u, S_u) dM_u dN_u
\]

where

\[
M_t = N_t - \int_0^t (l - N_{u-}) \mu_u du.
\]

Taking into account the representation (4) for \(F((Y)_t, S_t) \) we have from (7) that

\[
V_t^* = V_0^* + \int_0^t (l - N_{u-}) dM_u dF((Y)_u, S_u) - \int_0^t F((Y)_u, S_u)(l - N_{u-}) dM_u du - \int_0^t F((Y)_u, S_u)(l - N_{u-}) dN_u
\]

\[
+ \sum_{u \leq t} \left[F((Y)_u, S_u)(l - N_{u-}) - F((Y)_u, S_u)(l - N_{u-}) \right] dM_u
\]

\[
- (l - N_{u-}) \Delta F((Y)_u, S_u) + F((Y)_u, S_u) dM_u dN_u
\]

Note that any capital \(V_t^* \) controlled by a self-financing strategy can be represented in the form (1). Consider the mean variance distance between \(V_t^* \) and \(V_t^f = f_t \):

\[
R(\pi, v) = \mathbb{E} \left[(V_t^f - V_t^*)^2 \right].
\]

Because of the martingale properties of \(V_t^* \) and \(V_t^f \), it is clear that the initial capital \(\hat{v} \) for the optimal trading strategy should be equal to \(V_0^* \):

\[
\hat{v} = lE[g(S_T)p(0, T) = lF(0, S_0)P(\{\tau > T\})].
\]

Let the initial capital \(v \) of the self-financing strategy \(\pi \) be equal to \(\hat{v} \); then

\[
R(\pi, v) = \mathbb{E} \left[\left(\int_0^t (l - N_{u-}) dM_u dF((Y)_u, S_u) - \gamma u) S_u \right) dY_u
\]

\[
- \int_0^t F((Y)_u, S_u)(l - N_{u-}) dM_u du - \int_0^t F((Y)_u, S_u)(l - N_{u-}) dN_u
\]

\[
+ \sum_{u \leq t} \left[(l - N_{u-}) \Delta F((Y)_u, S_u)
\]

\[
- (l - N_{u-}) \Delta F((Y)_u, S_u) + \gamma u S_u \Delta Y_u
\]

\[
- \gamma u S_u \gamma u S_u \Delta Y_u \right)^2 \right].
\]
Since the difference
\[M_t = V_t^* - V_t^\pi \]
is a martingale with respect to \(F \), there is a unique representation of the form
\[M_t = M^c_t + M^d_t, \]
where \(M^c \) and \(M^d \) are respectively the purely continuous and discontinuous parts of \(M_t \), which are orthogonal. Consequently
\[\mathbb{E} [M_t^2] = \mathbb{E} [(M^c_t)^2] + \mathbb{E} [(M^d_t)^2]. \]
Let us rewrite \(M^c \) in the form
\[M^c_t = \int_0^t (l - N_u) a^T F_x (\langle Y \rangle_u, S_u) - \gamma_u S_u \, dY^c_u - \int_0^t F (\langle Y \rangle_u, S_u) a^T dM^c_u. \]
Since \(Y_u \) and \(M_u \) are independent, we get
\[\mathbb{E} [(M^c_t)^2] = \mathbb{E} \left[\int_0^t (l - N_u) a^T F_x (\langle Y \rangle_u, S_u) - \gamma_u S_u \, dY^c_u \right]^2 + \mathbb{E} \left[\int_0^t F (\langle Y \rangle_u, S_u) a^T dM^c_u \right]^2. \]
In the case of the purely discontinuous part \(M^d \), we have the formula
\[M^d_u = \sum_{u \leq t} \left[-a^T F (\langle Y \rangle_u, S_u) \Delta N_u + (l - N_u) a^T \Delta F (\langle Y \rangle_u, S_u) - \gamma_u \Delta S_u \right], \]
and therefore
\[\mathbb{E} [(M^d_t)^2] = \mathbb{E} \left[\left(\sum_{u \leq t} \left[-a^T F (\langle Y \rangle_u, S_u) \Delta N_u + (l - N_u) a^T \Delta F (\langle Y \rangle_u, S_u) - \gamma_u \Delta S_u \right] \right)^2 \right]. \]
It is well known (see [2]) that the times of the jumps of the Gaussian martingale are deterministic. Denote the corresponding set by \(A \). Define the processes \(\bar{\gamma} \) and \(\tilde{\gamma} \) by the following formulas:
\[\bar{\gamma}_u = \gamma_u \chi_A, \quad \tilde{\gamma}_u = \gamma_u \chi_{\overline{A}}, \]
where \(\chi_A \) is the indicator function of the set \(A \). Take
\[\gamma_u = \bar{\gamma}_u + \tilde{\gamma}_u. \]
Since \(A \) is a countable set,
\[\mathbb{E} [(M^c_t)^2] = \mathbb{E} \left[\int_0^t (l - N_u) a^T F_x (\langle Y \rangle_u, S_u) - \tilde{\gamma}_u S_u \, dY^c_u \right]^2 + \mathbb{E} \left[\int_0^t F (\langle Y \rangle_u, S_u) a^T dM^c_u \right]. \]
On the other hand it is clear that
\[E[(\mathcal{M}^t)^2] = E \left[\left(\sum_{u \in A} \left[-u_{pt} F((Y)_t, S_u) \Delta N_u \\
+ (l - N_{u-})_u_{pt} F((Y)_t, S_u) - \gamma_u \Delta S_u \right] \right)^2 \right] \\
= E \left[\left(\sum_{u \in A} \left[-u_{pt} F((Y)_t, S_u) \Delta N_u \\
+ (l - N_{u-})_u_{pt} F((Y)_t, S_u) - \tau_u \Delta S_u \right] \right)^2 \right] \\
+ E \left[\left(\sum_{u \in A} u_{pt} F((Y)_t, S_u) \Delta N_u \right)^2 \right]. \]

Equations (11) and (10) give us the explicit forms of \(\tilde{\gamma} \) and \(\tilde{\tau} \):
\[\tilde{\gamma} = (l - N_{t-})_t_{pt} F_x((Y)_{t-}, S_t) \lambda \mathcal{T} \]
and
\[\tilde{\tau}_t = t_{pt} (l - N_{t-}) E \left[\frac{\Delta F((Y)_t, S_t) \Delta S_t | F_{t-}}{E[\Delta(S)^2 | F_{t-}]} \right], \]
where 0/0 is supposed to be equal to 0.

So, we get the following main result of the paper:

Theorem 1. For the \((B, S)\)-market controlled by a Gaussian martingale and a portfolio of \(l \) homogeneous unit-linked pure endowment insurance contracts, there is an optimal mean-variance hedging strategy \(\tilde{\gamma} = \hat{\gamma} + \tilde{\tau} \), where the continuous part \(\hat{\gamma} \) and the purely discontinuous part \(\tilde{\tau} \) are defined by (11) and (12), respectively.

The initial capital \(\hat{v} \) of the strategy can be calculated by
\[\hat{v} = l E[g(S_T)] P(\tau > T), \]
where \(g(S_t) \) is a payment function for one insurance contract, \(T \) is a terminal time, and \(\tau \) is a random time with distribution of the incident occurrence.

Example 1. The model investigated above includes the model considered by T. Møller (see [3]) when \(Y_t \) is Brownian motion. Taking, in our setting,
\[\tilde{\tau}_t \equiv 0, \quad \hat{\gamma}_t = \tilde{\gamma}_t = (l - N_{t-})_t_{pt} F_x((Y)_t, S_t) \]
gives the model and the result presented in [3].

Example 2. Another interesting example is the discrete model
\[S_n = S_0 \exp \left\{ M_n - \frac{1}{2} (M)_n \right\}, \]
\[B_n \equiv 1, \]
where \(M_n = h_1 + \cdots + h_n, \ h_i = \sigma \epsilon_i, \ \epsilon_i \sim N(0, 1), \) and \(\epsilon_i \) are i.i.d. random variables on the probability space \((\Omega^l, F^l, P^l)\) with filtration \(F^l = \{ \mathcal{F}^1_n \}, \ \mathcal{F}^1_n = \sigma \{ \epsilon_i, i \leq n \}. \) It is clear that \((M)_n = \sigma^2 n \) and
\[S_n = S_0 \exp \left\{ h_1 + \cdots + h_n - \frac{\sigma^2}{2} n \right\}. \]
Using the independence of ϵ_i, we have

$$E[S_n \mid \mathcal{F}_{n-1}] = S_{n-1} E \left[\exp \left\{ h_n - \sigma^2/2 \right\} \mid \mathcal{F}_{n-1} \right] = S_{n-1}.$$

We can embed the discrete model to our general model by the following standard way:

$$Y_t = \begin{cases} 0, & t \in [0, 1), \\ M_n, & t \in [n, n+1), n < N, \\ M_N, & t \in [N, N+\delta), N+\delta = T, \end{cases}$$

$$\mathcal{F}_t^1 = \mathcal{F}_t^0, F^1 = \{\mathcal{F}_t^1\}_{t \geq 0}.$$

It is clear that Y is a Gaussian martingale on the standard stochastic basis $$(\Omega^1, \mathcal{F}^1, F^1, P^1)$$ satisfying the technical condition $\Delta Y_T = 0$. In view of the theorem $\tilde{\gamma}_n = 0$ because there is no continuous part of Y. Regarding the other part of a hedging strategy γ_n we have

$$E[\Delta F(\langle Y \rangle_n, S_n) \Delta S_n \mid \mathcal{F}_{n-1}] = E[(F(\langle Y \rangle_n, S_n) - F(\langle Y \rangle_{n-1}, S_{n-1})) \Delta S_n \mid \mathcal{F}_{n-1}] = E[F(\langle Y \rangle_n, S_n) \Delta S_n \mid \mathcal{F}_{n-1}] = E[g(S_T \Delta S_n) \mid \mathcal{F}_{n-1}].$$

Hence we get

$$\tilde{\gamma}_t = \gamma_n = n \frac{p_T(l - N_{n-1})}{E[(\Delta S_n)^2 \mid \mathcal{F}_{n-1}]},$$

where $S_T = S_N$.

Bibliography

Steklov Mathematical Institute, Gubkina 8, Moscow 117966, Russia

Current address: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

Steklov Mathematical Institute, Gubkina 8, Moscow 117966, Russia

Received 12/MAR/2003

Originally published in English