Limit distributions of extreme values of bounded independent random functions
Author:
I. K. Matsak
Translated by:
Oleg Klesov
Journal:
Theor. Probability and Math. Statist. 71 (2005), 129-138
MSC (2000):
Primary 60B12, 60G70
DOI:
https://doi.org/10.1090/S0094-9000-05-00653-8
Published electronically:
December 28, 2005
MathSciNet review:
2144326
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study the limit probabilities that extreme values of a sequence of independent normal random functions belong to extending intervals.
References
- B. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire, Ann. of Math. (2) 44 (1943), 423–453 (French). MR 8655, DOI https://doi.org/10.2307/1968974
- Janos Galambos, The asymptotic theory of extreme order statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1978. Wiley Series in Probability and Mathematical Statistics. MR 489334
- M. R. Leadbetter, Georg Lindgren, and Holger Rootzén, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York-Berlin, 1983. MR 691492
- Ī. K. Matsak, Weak convergence of extreme values of independent random elements in Banach spaces with an unconditional basis, Ukraïn. Mat. Zh. 48 (1996), no. 6, 805–812 (Ukrainian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 48 (1996), no. 6, 905–913 (1997). MR 1418157, DOI https://doi.org/10.1007/BF02384175
- Ī. K. Matsak, On integral functionals of extremal random functions, Teor. Ĭmovīr. Mat. Stat. 65 (2001), 110–120 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 65 (2002), 123–134. MR 1936135
- Bruce M. Brown and Sidney I. Resnick, Extreme values of independent stochastic processes, J. Appl. Probability 14 (1977), no. 4, 732–739. MR 517438, DOI https://doi.org/10.2307/3213346
- Ī. K. Matsak, Asymptotic properties of the norm of the extremum of a sequence of normal random functions, Ukraïn. Mat. Zh. 50 (1998), no. 10, 1359–1365 (Ukrainian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 50 (1998), no. 10, 1551–1558 (1999). MR 1711233, DOI https://doi.org/10.1007/BF02513503
- A. V. Buhvalov, A. I. Veksler, and V. A. Geĭler, Normed lattices, Mathematical analysis, Vol. 18 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980, pp. 125–184 (Russian). MR 597904
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- M. A. Lifshits, Gaussian random functions, Mathematics and its Applications, vol. 322, Kluwer Academic Publishers, Dordrecht, 1995. MR 1472736
- Harald Cramér and M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR 0217860
- Ju. K. Beljaev and V. I. Piterbarg, The asymptotic behavior of the average number of the $A$-points of upcrossings of a Gaussian field beyond a high level, Dokl. Akad. Nauk SSSR 203 (1972), 9–12 (Russian). MR 0300334
- Clifford Qualls and Hisao Watanabe, Asymptotic properties of Gaussian processes, Ann. Math. Statist. 43 (1972), 580–596. MR 307318, DOI https://doi.org/10.1214/aoms/1177692638
References
- B. V. Gnedenko, Sur la distribution limit du terme maximum d’une série aléatoire, Ann. Math. 44 (1943), 423–453. MR 0008655 (5:41b)
- J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley, New York–Chichester–Brisbane–Toronto, 1978. MR 0489334 (80b:60040)
- M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1983. MR 0691492 (84h:60050)
- I. K. Matsak, The weak convergence of extremal values of independent random elements in Banach spaces with an unconditional basis, Ukr. Matem. Zh. 48 (1996), no. 6, 805–812; English transl. in Ukrain. Math. J. 48 (1997), no. 6, 905–913. MR 1418157 (97i:60007)
- I. K. Matsak, On integral functionals of extreme value random functions, Teor. Imovir. ta Matem. Statist. 65 (2001), 110–120; English transl. in Theor. Probability and Math. Statist. 65 (2002), 123–134. MR 1936135 (2004g:60010)
- B. M. Brown and S. I. Resnick, Extreme values of independent stochastic processes, J. Appl. Probab. 14 (1977), 732–739. MR 0517438 (58:24470)
- I. K. Matsak, Asymptotic properties of the norm of the extremal value in the sequence of normal random functions, Ukr. Matem. Zh. 50 (1998), no. 10, 1359–1365; English transl. in Ukrain. Math. J. 50 (1999), no. 10, 1405–1415. MR 1711233 (2000g:60064)
- A. V. Bukhvalov, A. I. Veksler, and V. A. Geiler, Normed lattices, Itogi Nauki i Tekhniki, Mathematical Analysis, vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980, pp. 125–184. MR 0597904 (82b:46019)
- J. Lindenstraus and L. Tzafriri, Classical Banach Spaces, vol. 2, Springer, Berlin, 1979. MR 0540367 (81c:46001)
- M. A. Lifshits, Gaussian Random Functions, TViMS, Kiev, 1995; English transl., Kluwer, Dordrecht, 1995. MR 1472736 (98k:60059)
- H. Cramér and M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967. MR 0217860 (36:949)
- Yu. K. Belyaev and V. I. Piterbarg, Asymptotic behavior of the mean value of $A$-points of outliers of a Gaussian field for a high level, Dokl. Akad. Nauk SSSR, 203 (1972), no. 1, 9–12. (Russian) MR 0300334 (45:9380)
- C. Qualls and H. Watanabe, Asymptotic properties of Gaussian processes, Ann. Math. Statist. 43 (1972), 580–596. MR 0307318 (46:6438)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60B12,
60G70
Retrieve articles in all journals
with MSC (2000):
60B12,
60G70
Additional Information
I. K. Matsak
Affiliation:
Kyiv National University for Design and Technology, Nemyrovych-Danchenko Street 2, 01601, Kyiv–11, Ukraine
Email:
infor1@vtv.kiev.ua
Received by editor(s):
January 13, 2002
Published electronically:
December 28, 2005
Article copyright:
© Copyright 2005
American Mathematical Society