PRV property of functions and the asymptotic behaviour of solutions of stochastic differential equations
Authors:
V. V. Buldygin, O. I. Klesov and J. G. Steinebach
Translated by:
The authors
Journal:
Theor. Probability and Math. Statist. 72 (2006), 11-25
MSC (2000):
Primary 60H10; Secondary 34D05, 60F15, 60G17
DOI:
https://doi.org/10.1090/S0094-9000-06-00660-0
Published electronically:
August 10, 2006
MathSciNet review:
2168132
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In this paper, we investigate the a.s. asymptotic behaviour of the solution of the stochastic differential equation $dX(t) = g(X(t)) dt + \sigma (X(t)) dW(t)$, where $g(\boldsymbol \cdot )$ and $\sigma (\boldsymbol \cdot )$ are positive continuous functions and $W(\boldsymbol \cdot )$ is a standard Wiener process. By an application of the theory of PRV and PMPV functions, we find conditions on $g(\boldsymbol \cdot )$ and $\sigma (\boldsymbol \cdot )$, under which $X(\boldsymbol \cdot )$ may be approximated a.s. on $\{X(t)\to \infty \}$ by the solution of the deterministic differential equation $d\mu (t) = g(\mu (t)) dt$. Moreover, we study the asymptotic stability with respect to initial conditions of solutions of the above SDE as well as the asymptotic behaviour of generalized renewal processes connected with this SDE.
References
- V. G. \Avakumovic, Über einen O–Inversionssatz, Bull. Int. Acad. Youg. Sci. 29–30 (1936), 107–117.
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR 898871
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukraïn. Mat. Zh. 54 (2002), no. 2, 149–169 (English, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 54 (2002), no. 2, 179–206. MR 1952816, DOI https://doi.org/10.1023/A%3A1020178327423
- V. V. Buldigīn, O. Ī. Klesov, and Ĭ. G. Shtaĭnebakh, On some properties of asymptotically quasi-inverse functions and their application. I, Teor. Ĭmovīr. Mat. Stat. 70 (2004), 9–25 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 70 (2005), 11–28. MR 2109819, DOI https://doi.org/10.1090/S0094-9000-05-00627-7
- V. V. Buldigīn, O. Ī. Klesov, and Ĭ. G. Shtaĭnebakh, On some properties of asymptotically quasi-inverse functions and their application. II, Teor. Ĭmovīr. Mat. Stat. 71 (2004), 34–48 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 71 (2005), 37–52. MR 2144319, DOI https://doi.org/10.1090/S0094-9000-05-00646-0
- Ĭ. Ī. Gīhman and A. V. Skorohod, Stochastic differential equations, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by Kenneth Wickwire; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72. MR 0346904
- J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38–53.
- J. Karamata, Bemerkung über die vorstehende Arbeit des Herrn \Avakumovic, mit näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen, Bull. Int. Acad. Youg. Sci. 29–30 (1936), 117–123.
- G. Keller, G. Kersting, and U. Rösler, On the asymptotic behaviour of solutions of stochastic differential equations, Z. Wahrsch. Verw. Gebiete 68 (1984), no. 2, 163–189. MR 767799, DOI https://doi.org/10.1007/BF00531776
- Oleg Klesov, Zdzisław Rychlik, and Josef Steinebach, Strong limit theorems for general renewal processes, Probab. Math. Statist. 21 (2001), no. 2, Acta Univ. Wratislav. No. 2328, 329–349. MR 1911442
- B. I. Korenblyum, On the asymptotic behavior of Laplace integrals near the boundary of a region of convergence, Dokl. Akad. Nauk SSSR (N.S.) 104 (1955), 173–176. MR 0074550
- S. Parameswaran, Partition functions whose logarithms are slowly oscillating, Trans. Amer. Math. Soc. 100 (1961), 217–240. MR 140498, DOI https://doi.org/10.1090/S0002-9947-1961-0140498-X
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
- U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms, J. Reine Angew. Math. 311(312) (1979), 283–290. MR 549970, DOI https://doi.org/10.1016/0022-247X%2882%2990260-8
- A. L. Yakymiv, Asymptotics of the probability of nonextinction of critical Bellman-Harris branching processes, Trudy Mat. Inst. Steklov. 177 (1986), 177–205, 209 (Russian). Proc. Steklov Inst. Math. 1988, no. 4, 189–217; Probabilistic problems of discrete mathematics. MR 840684
References
- V. G. \Avakumovic, Über einen O–Inversionssatz, Bull. Int. Acad. Youg. Sci. 29–30 (1936), 107–117.
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. MR 0898871 (88i:26004)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Properties of a subclass of \Avakumovic functions and their generalized inverses, Ukrain. Math. J. 54 (2002), 179–205. MR 1952816 (2003i:60044)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Some properties of asymptotic quasi-inverse functions and their applications I, Theory Probab. Math. Statist. 70 (2005), 11–28. MR 2109819 (2005i:26005)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Some properties of asymptotic quasi-inverse functions and their applications II, Theory Probab. Math. Statist. 71 (2005), 37–52. MR 2144319 (2006d:26002)
- I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, Berlin–Heidelberg–New York, 1972. MR 0346904 (49:11625)
- J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38–53.
- J. Karamata, Bemerkung über die vorstehende Arbeit des Herrn \Avakumovic, mit näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen, Bull. Int. Acad. Youg. Sci. 29–30 (1936), 117–123.
- G. Keller, G. Kersting, and U. Rösler, On the asymptotic behaviour of solutions of stochastic differential equations, Z. Wahrsch. Verw. Geb. 68 (1984), 163–184. MR 0767799 (86i:60153)
- O. Klesov, Z. Rychlik, and J. Steinebach, Strong limit theorems for general renewal processes, Probab. Math. Statist. 21 (2001), 329–349. MR 1911442 (2003j:60120)
- B. H. Korenblyum, On the asymptotic behaviour of Laplace integrals near the boundary of a region of convergence, Dokl. Akad. Nauk. USSR (N.S.) 105 (1955), 173–176. MR 0074550 (17:605a)
- S. Parameswaran, Partition functions whose logarithms are slowly oscillating, Trans. Amer. Math. Soc. 100 (1961), 217–240. MR 0140498 (25:3918)
- E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin, 1976. MR 0453936 (56:12189)
- U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms, J. Reine Angew. Math. 311/312 (1979), 283–290. MR 0549970 (81f:44006)
- A. L. Yakymiv, Asymptotics of the probability of nonextinction of critical Bellman–Harris branching processes, Proc. Steklov Inst. Math. 4 (1988), 189–217. MR 0840684 (88d:60221)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60H10,
34D05,
60F15,
60G17
Retrieve articles in all journals
with MSC (2000):
60H10,
34D05,
60F15,
60G17
Additional Information
V. V. Buldygin
Affiliation:
Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine (KPI), Pr. Peremogy 37, Kyiv 03056, Ukraine
Email:
valbuld@comsys.ntu-kpi.kiev.ua
O. I. Klesov
Affiliation:
Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine (KPI), Pr. Peremogy 37, Kyiv 03056, Ukraine
Email:
oleg@tbimc.freenet.kiev.ua
J. G. Steinebach
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86–90, D–50931 Köln, Germany
Email:
jost@math.uni-koeln.de
Received by editor(s):
July 15, 2004
Published electronically:
August 10, 2006
Additional Notes:
This work has partially been supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-2 and 436 UKR 113/68/0-1.
Article copyright:
© Copyright 2006
American Mathematical Society