H. JÖNSSON, A. G. KUKUSH, AND D. S. SILVESTROV

Abstract. The paper presents results of theoretical studies of optimal stopping domains of American type options in discrete time. Sufficient conditions on the payoff functions and the price process for the optimal stopping domains to have one-threshold structure are given. We consider monotone, convex and inhomogeneous-in-time payoff functions. The underlying asset’s price is modelled by an inhomogeneous discrete time Markov process.

1. Introduction

The present paper is a continuation of Jönsson, Kukush, and Silvestrov [5]. In the mentioned paper we presented sufficient local conditions on the payoff functions and the price process for American type put options with convex nonincreasing payoff functions such that the optimal stopping domains have a one-threshold structure.

Here we give examples of put type payoff functions and the corresponding concrete form of the sufficient condition introduced in [5].

Further, we present sufficient conditions equivalent to the conditions presented in [5] such that the optimal stopping domains for American type call options have a one-threshold structure.

All notation used and the list of related publications are introduced in [5].

2. Examples

In the following examples we will consider homogeneous-in-time payoff functions and constant interest rate, i.e., \(g_n(x) = g(x) \) and \(r_n = r > 0 \) for all \(n = 0, 1, \ldots, N \).

Further we assume that the price of the underlying asset follows a multiplicative random walk, i.e., for all \(n = 1, \ldots, N \),

\[A_n(x, Y_n) = xY_n. \]

In particular, we have the cases:

(i) binomial random walk

\[Y_n = \begin{cases} U & \text{with prob. } p, \\ D & \text{with prob. } 1 - p, \end{cases} \]

where \(0 < D < e^r < U \), and \(0 \leq p \leq 1 \) is the probability for an up-movement;

2000 Mathematics Subject Classification. Primary 91B28, 62P05; Secondary 60J25, 60J20.

Key words and phrases. Markov process, discrete time, American type option, convex payoff function, optimal stopping.

Supported in part by the Visby programme (funded by the Swedish Institute), and by grants from the Knowledge Foundation and the Royal Swedish Academy of Science.
(ii) geometrical random walk with log-normal increments
\[Y_n = e^{\mu + \sigma \xi_n}, \quad n = 1, 2, \ldots, \]
where \(\sigma > 0 \) and \(\xi_n \) are independent standard normal random variables.

Example 1. For the standard American put option with payoff function
\[g(x) = \max\{0, K - x\}, \]
condition B2 takes the form
\[EY_{n+1} \leq e^r, \]
for \(0 \leq x \leq K \) and each \(n = 0, 1, \ldots, N - 1 \).

We see that condition B2 covers the risk-neutral case \(EY_{n+1} = e^r \) for both the binomial random walk and the geometrical random walk with log-normal increments.

Hence, the risk-neutrality is sufficient for the existence of a one-threshold structure in the case of the standard American put option. This result is known, e.g., from Merton [2], Kim [6], Jacka [2], and Broadie and Detemple [1].

Example 2. Let us consider a time-homogeneous piecewise linear payoff function with two intervals with different slopes given by
\[g(x) = \begin{cases} a_1(K_1 - x) + a_2(K_2 - K_1), & 0 \leq x < K_1, \\ a_2(K_2 - x), & K_1 \leq x < K_2, \\ 0, & x \geq K_2, \end{cases} \]
where \(K_1 < K_2 \) are the first and second strike prices and \(0 < a_2 \leq a_1 \) are the scale pricing coefficients for price intervals \([0, K_1)\) and \([K_1, K_2)\), respectively. Note that for \(a_2 = a_1 = 1 \), we have the standard American put option with strike price \(K_2 \).

Inserting the payoff function (1) into condition B2 gives
\[e^r(-a_1 I_{[0,K_1]}(x) - a_2 I_{[K_1,K_2]}(x)) \leq E\{-a_1 Y_{n+1} I_{[0,K_1]}(x Y_{n+1})\} + E\{-a_2 Y_{n+1} I_{[K_1,K_2]}(x Y_{n+1})\} \\
- a_2 E\{Y_{n+1} I_{[K_2,\infty]}(x Y_{n+1})\} \\
= E\{-a_2 Y_{n+1}\} + (a_1 - a_2) E\{Y_{n+1} I_{[0,K_1/z]}(Y_{n+1})\}. \]
If \(0 \leq x \leq K_1 \), then
\[E\{-a_2 Y_{n+1}\} - (a_1 - a_2) E\{Y_{n+1} I_{[0,K_1/z]}(Y_{n+1})\} \geq -a_1 E Y_{n+1} \geq -a_1 e^r, \]
where the last inequality should hold if condition B2 holds.

If \(K_2 < x < \infty \), then
\[E\{-a_2 Y_{n+1}\} - (a_1 - a_2) E\{Y_{n+1} I_{[0,K_1/z]}(Y_{n+1})\} \geq E\{-a_2 Y_{n+1}\} - (a_1 - a_2) E\{Y_{n+1} I_{[0,K_1/K_2]}(Y_{n+1})\} \geq -a_2 e^r, \]
where the last inequality should hold if condition B2 holds.

Thus the following condition should hold to fulfill condition B2:
\[F2: \quad E Y_{n+1} + (a_1/a_2 - 1) E\{Y_{n+1} I_{[0,K_1/K_2]}(Y_{n+1})\} \leq e^r. \]
If \(I_{[0,K_1/K_2]}(Y_{n+1}) \neq 0 \), then combining F2 and the fact that \(a_2 \leq a_1 \) we get
\[a_2 \leq a_1 \leq a_2 \left[1 + \frac{e^r - E Y_{n+1}}{E\{Y_{n+1} I_{[0,K_1/K_2]}(Y_{n+1})\}} \right]. \]
There are three possible cases that can occur in (2).

First, if \(E Y_{n+1} = e^r \), then \(a_1 = a_2 \) is a sufficient condition for a one-threshold structure.
Second, if \(EY_{n+1} < e^r \), then
\[
c = \frac{e^r - EY_{n+1}}{E\{Y_{n+1}I_{[0,K_1/K_2]}(Y_{n+1})\}} > 0
\]
and \(a_2 \leq a_1 \leq a_2 + c \cdot a_2 \) is a sufficient condition.

Finally, if \(EY_{n+1} > e^r \), we get \(a_1 < a_2 \), but this is not a function from the class \(G \), so we cannot say anything in this case.

For the binomial random walk, (2) takes the form
\[
a_2 \leq a_1 \leq a_2 \frac{e^r - pU}{(1 - p)D}
\]
if \(D \leq K_1/K_2 \). To assume that \(U \leq K_1/K_2 < 1 \) does not make any sense since this implies that \(e^r < 1 \), i.e., \(r < 0 \).

If \(D > K_1/K_2 \) we get \(EY_{n+1} \leq e^r \) as a sufficient condition for a one-threshold structure, since \(I_{[0,1]}(Y_{n+1}) = 0 \) in \(F_2 \).

If \(Y_{n+1} \) is log-normal distributed, (2) takes the form
\[
a_2 \leq a_1 \leq a_2 + a_2 \frac{e^r - e^{\mu + \sigma^2/2}}{e^{\mu + \sigma^2/2}(\Phi(K_1/K_2 - \mu/\sigma - \sigma) - \phi(-\mu/\sigma - \sigma))}.
\]

In Figure 1 and Figure 2, two examples of piecewise linear payoff functions and the corresponding optimal stopping domains are given.

An intuitive understanding of the structure of the optimal stopping domains is the following: We can assume that the change of the asset value is reasonably large, i.e., the probability of very large jumps in the asset value is small. When the asset value is approaching the first strike price \(K_1 \) from above, the probability of reaching below \(K_1 \) at moment \(n + 1 \) will increase. This means that the expected discounted value of the future payoff will increase and finally at some level become greater than the payoff at moment \(n \). Thus, there will exist an interval of values around the first strike price such that it is better to hold the option at least until moment \(n + 1 \).

Note that the structures of the optimal stopping domains shown are not the only variants we can expect.
3. Threshold Structure of Optimal Stopping Domains for Call Options

In this section we consider the structure of the optimal stopping domains for American type call options.

In Jönsson, Kukush, and Silvestrov [3] the structure of the optimal stopping domains for American type call options with nonnegative, nondecreasing and convex payoff functions is investigated for a multiplicative price process, i.e., $S_n = S_{n-1}Y_n$.

Here we will present the sufficient local conditions presented in [3], for the same class of payoff functions, formulated however for the general Markov process

$$S_n = A_n(S_{n-1}, Y_n), \quad n = 1, \ldots, N,$$

where $A_n(x, y)$, $n = 1, 2, \ldots, N$, is a measurable function acting on $\mathbb{R}^+ \times Y$ to \mathbb{R}^+, $\mathbb{R}^+ = [0, \infty)$ and Y is a measurable space.

Instead of condition A2 given in Jönsson, Kukush, and Silvestrov [5] we now impose the following condition on the price process:

\[\text{A2}: \text{For each } y \in Y \text{ and } n = 1, 2, \ldots, N, A_n(x, y) \text{ is a nondecreasing and convex function in } x.\]

This assumption does not look as natural as A2 in [5], though it holds, e.g., for the classical multiplicative model $A_n(x, Y_n) = xY_n$, $n = 1, 2, \ldots, N$.

Denote by \tilde{G} the class of nondecreasing and convex functions acting from \mathbb{R}^+ to \mathbb{R}^+.

In the case of call options, we consider payoff functions with the following property

\[\text{G1}: \text{For every } n = 0, 1, \ldots, N, \text{ the payoff function } g_n \text{ belongs to the class } \tilde{G}.\]

Hereafter $g'_n(x)$ denotes the right derivative for a function $g(x) \in \tilde{G}$. Moreover, $g'_n(x)$ coincides with the ordinary derivative at all points where the function $g(x)$ is differentiable. Note that $g'_n(x)$ is a nonnegative and nondecreasing function.

We define the operator \tilde{T}_n, acting on nonnegative and nondecreasing functions $f(x)$ defined on \mathbb{R}^+ by the formula

$$\tilde{T}_n f(x) = E \{ f(A_n(S_{n-1}, Y_n)) \mid S_{n-1} = x \} = E f(A_n(x, Y_n)).$$
For convenience we repeat the definitions of the reward functions and the optimal stopping domains given in [5]. The reward functions are defined recursively starting with
\begin{equation}
 w_0(x) = g_N(x),
\end{equation}
and for the moments \(n = N - 1, \ldots, 0, \)
\begin{equation}
 w_{N-n}(x) = \max \left\{ g_n(x), e^{-r_{n+1}}T_{n+1}w_{N-n-1}(x) \right\}.
\end{equation}
For \(n = 0, \ldots, N - 1, \) using equation (6), we can define the optimal stopping domains by
\begin{equation}
 \Gamma_n = \left\{ x : g_n(x) \geq e^{-r_{n+1}}T_{n+1}w_{N-n-1}(x) \right\}.
\end{equation}
We impose the following conditions:
\begin{enumerate}
 \item \(\hat{A}_2 \): \ For each \(n = 0, 1, \ldots, N - 1, \)
 \[
 \liminf_{x \to -\infty} e^{-r_{n+1}}T_{n+1}g_{n+1}(x) < 1.
 \]
 \item \(\hat{A}_2 \): \ For any \(0 < d < \infty \) and for each \(n = 0, 1, \ldots, N - 1, \)
 \[
 \lim_{x \to -\infty} \mathbb{P}\{A_{n+1}(x, Y_{n+1}) < d\} = 0.
 \]
\end{enumerate}
We shall show that these two conditions guarantee that \(\hat{\Gamma}_n \neq \emptyset. \)
The following condition plays a key role:

\[\textbf{B1: For every } n = 0, 1, \ldots, N - 1, \text{ and } x \in \mathbb{R}^+, \]
\[g_n(x) \geq e^{-\tau_n-1} \mathbb{E} g_{n+1}(A_{n+1}(x, Y_{n+1})) A'_{n+1}(x, Y_{n+1}). \]

Due to \textbf{B1}, for each \(x > 0 \) and every \(n = 0, 1, \ldots, N - 1, \)
\[e^{-\tau_n+1} \mathbb{E} g_{n+1}(A_{n+1}(x, Y_{n+1})) A'_{n+1}(x, Y_{n+1}) < \infty. \]

Theorem 1. Under conditions \(\textbf{A1}, \textbf{A2}, \textbf{G1}, \textbf{B1}, \textbf{E1} \) and \(\textbf{E2}, \) for each \(n = 0, 1, \ldots, N - 1, \)
there exists \(0 \leq d_n < \infty \) such that the optimal stopping domain has the one-threshold structure
\[\Gamma_n = [d_n, \infty). \]

Proof. The structure of the optimal stopping domains given in (8) corresponds to the following two properties of the optimal stopping domain: (a) \(\Gamma_n \neq \emptyset \) and closed; (b) if \(x' \in \Gamma_n, \) then \(x'' \in \Gamma_n \) for any \(x' < x'' < \infty. \)

Consider moment \(N - 1. \) From condition \textbf{E1} we know that there exists an increasing sequence \(\{x_k\} \) such that \(x_k \rightarrow \infty \) and, for all \(k \geq 1, \)
\[g_{N-1}(x_k) \geq (1 + \lambda)e^{-\tau_N} T_N g_N(x_k), \]
with \(\lambda > 0 \) independent of \(k. \)

Relation (10) implies that \(x_k \in \Gamma_{N-1}, \) for all \(k \geq 1, \) i.e., \(\Gamma_{N-1} \neq \emptyset. \)

Furthermore, \(\Gamma_{N-1} \) is bounded below by 0. Thus there exists a point
\[0 \leq d_{N-1} := \inf \{ x \colon \Gamma_{N-1} \} < \infty. \]

Moreover, the functions \(g_{N-1}(x) \) and \(e^{-\tau_N} T_N g_N(x) \) are continuous by condition \textbf{G1} and Lemma1 respectively. It follows from the continuity of these functions and the defining formula (7) that \(\Gamma_{N-1} \) is closed, and, therefore, \(d_{N-1} \in \Gamma_{N-1}. \) Thus property (a) holds for \(\Gamma_{N-1}. \)

By condition \textbf{B1} and Lemma2 for any \(x \geq 0, \)
\[g'_{N-1}(x) \geq e^{-\tau_N} \mathbb{E} g'_{N}(A_{N}(x, Y_{N})) A'_N(x, Y_N)
\]
\[= (e^{-\tau_N} T_N w_0)'_+(x). \]

Assume that \(x' \in \Gamma_{N-1}. \) By this assumption and relation (11), for any \(x' \leq x'' < \infty, \)
\[g_{N-1}(x'') = g_{N-1}(x') + \int_{x'}^{x''} g'_{N-1}(t) dt \]
\[\geq e^{-\tau_N} T_N w_0(x') + \int_{x'}^{x''} e^{-\tau_N} (T_N w_0)'_+(t) dt \]
\[= e^{-\tau_N} T_N w_0(x''). \]

Thus, (b) holds for \(\Gamma_{N-1}. \)

Hence, we have proved that \(\Gamma_{N-1} \) has the one-threshold structure described in (8).

We now continue with moment \(N - 2. \) From condition \textbf{E1} we know that there exists an increasing sequence \(\{x_k\}, \) such that \(x_k \rightarrow \infty \) and, for all \(k \geq 1, \)
\[g_{N-2}(x_k) \geq (1 + \lambda)e^{-\tau_N-1} T_{N-1} g_{N-1}(x_k), \]
with \(\lambda > 0 \) independent of \(k \). By the definition of \(\tilde{T}_{N-1} \) and \(w_1 \),
\[
\tilde{T}_{N-1}w_1(x_1) = E g_{N-1}(A_{N-1}(x, Y_{N-1})) I(A_{N-1}(x, Y_{N-1}) \geq d_{N-1})
+ e^{-rN} \tilde{T}_N w_0(A_{N-1}(x, Y_{N-1})) I(A_{N-1}(x, Y_{N-1}) < d_{N-1})
:= I_1(x_1) + I_2(x_1).
\]
Consider the inequality
\[
(1 + \lambda) e^{-rN} \tilde{T}_{N-1} g_{N-1}(x_1) \geq e^{-rN} (I_1(x_1) + I_2(x_1)).
\]
From the definition of \(\tilde{T}_{N-1} \),
\[
e^{-rN} \tilde{T}_{N-1} g_{N-1}(x_1) \\
= e^{-rN} E g_{N-1}(A_{N-1}(x, Y_{N-1}))
\geq e^{-rN} E g_{N-1}(A_{N-1}(x, Y_{N-1})) I(A_{N-1}(x, Y_{N-1}) \geq d_{N-1})
= e^{-rN} I_1(x_1).
\]
Note that \(A_{N-1}(x, Y_{N-1}) \) \(\overset{P}{\rightarrow} \infty \) as \(x \rightarrow \infty \), since \(A_{N-1}(x, Y_{N-1}) \) is nondecreasing and convex in \(x \) and \(P\{A_{N-1}(x, Y_{N-1}) < d\} \rightarrow 0 \) as \(x \rightarrow \infty \) for any \(0 < d < \infty \) by \(\mathbf{E}2 \). Furthermore, \(g_{N-1}(x) \rightarrow \infty \) as \(x \rightarrow \infty \), since \(g_{N-1} \in \mathcal{G} \). Thus,
\[
I_1(x_1) = E g_{N-1}(A_{N-1}(x, Y_{N-1})) I(A_{N-1}(x, Y_{N-1}) \geq d_{N-1}) \rightarrow \infty,
\]
as \(k \rightarrow \infty \). From (15) we get that there exists an integer \(k_1 \geq 1 \) such that \(I_1(x_1) > 0 \), for all \(k \geq k_1 \), since \(I_1(x_1) \) is nondecreasing.

Thus (14) implies that for \(k \geq k_1 \),
\[
\lambda e^{-rN} \tilde{T}_{N-1} g_{N-1}(x_1) \geq \lambda e^{-rN} I_1(x_1) \geq \lambda e^{-rN} I_1(x_k) > 0.
\]
Consider \(I_2(x_k) \). Since \(\tilde{T}_N w_0(x) \) and \(A_{N-1}(x, Y_{N-1}) \) are nondecreasing in \(x \) and by condition \(\mathbf{E}2 \),
\[
I_2(x_k) = E e^{-rN} \tilde{T}_N w_0(A_{N-1}(x, Y_{N-1})) I(A_{N-1}(x, Y_{N-1}) < d_{N-1}) \\
\leq e^{-rN} \tilde{T}_N w_0(d_{N-1}) P\{A_{N-1}(x, Y_{N-1}) < d_{N-1}\} \rightarrow 0 \text{ as } k \rightarrow \infty.
\]
Thus there exists an integer \(k_2 \geq 1 \) such that for all \(k \geq k_2 \),
\[
\lambda e^{-rN} \tilde{T}_{N-1} g_{N-1}(x_k) > e^{-rN} I_2(x_k).
\]
Hence, it follows from (14) and (17) that there exists an integer \(k_0 = \max\{k_1, k_2\} \) such that (13) holds for all \(k \geq k_0 \) and by (12), for all \(k \geq k_0 \),
\[
g_{N-2}(x_k) \geq e^{-rN} \tilde{T}_{N-1} w_1(x_k).
\]
Relation (18) implies that, for all \(k \geq k_0 \), \(x_k \in \tilde{\Gamma}_{N-2} \), i.e., \(\tilde{\Gamma}_{N-2} \neq \emptyset \).

Since \(\tilde{\Gamma}_{N-2} \neq \emptyset \) and bounded below, there exists a point
\[
0 \leq d_{N-2} := \inf\{x : x \in \tilde{\Gamma}_{N-2}\} < \infty.
\]
From condition \(\mathbf{G}1 \) and Lemmas (1) and (3) respectively, the functions \(g_{N-2}(x) \) and \(\tilde{T}_{N-1} w_1 \) are continuous. By the continuity of these functions and the defining formula (7), \(\tilde{\Gamma}_{N-2} \) is closed and, therefore, \(d_{N-2} \in \tilde{\Gamma}_{N-2} \). Thus property (a) holds for \(\tilde{\Gamma}_{N-2} \).

From Lemmas (2) and (3) we have
\[
(\tilde{T}_{N-1} w_1)'_+ (x) = E [w_1(A_{N-1}(x, Y_{N-1}))]'_+.
\]
We now have to consider two cases concerning the expression on the right-hand side.
First, consider the case $A_{N−1}(x, Y_{N−1}) \geq d_{N−1}$. This is true if and only if $x \geq x_*(Y_{N−1})$, where $x_*(Y_{N−1}) = \inf\{x \geq 0: A_{N−1}(x, Y_{N−1}) \geq d_{N−1}\}$. Thus, we have proved that $	ilde{\Gamma}_n$ has the structure given in (8) for all $n = 1, \ldots, N$. Then

$$w_1(A_{N−1}(x, Y_{N−1})) = e^{−r_N}\tilde{T}_N g_N(z)|_{z=A_{N−1}(x, Y_{N−1})}^\prime,$$

and by Lemma 2 and condition \tilde{B}_1,

$$[w_1(A_{N−1}(x, Y_{N−1}))]^\prime\prime(+) = (g_{N−1}(A_{N−1}(x, Y_{N−1}))^\prime\prime(+) = g_{N−1,1}(A_{N−1}(x, Y_{N−1}))A_{N−1,1}(+) (x, Y_{N−1}).$$

Using relations (20) and (21) in (19) we get, for any $x \geq 0$,

$$\tilde{T}_{N−1}w_1(x) \leq E g_{N−1,1}(A_{N−1}(x, Y_{N−1}))A_{N−1,1}(x, Y_{N−1}).$$

and by condition \tilde{B}_1, for any $x \geq 0$,

$$g_{N−2,1}(x) \leq e^{−r_{N−1}}(\tilde{T}_{N−1}w_1)(x).$$

Assume that $x' \in \tilde{\Gamma}_{N−2}$. By this assumption and relation (22), for any $x' \leq x'' < \infty$,

$$g_{N−2}(x''') = g_{N−2}(x') + \int_{x'}^{x''} g_{N−2,1}(t) dt \geq e^{−r_{N−1}}\tilde{T}_{N−1}w_1(x') + \int_{x'}^{x''} e^{−r_{N−1}}(\tilde{T}_{N−1}w_1)^\prime(+) (t) dt = e^{−r_{N−1}}\tilde{T}_{N−1}w_1(x'').$$

Thus, (b) holds for $\tilde{\Gamma}_{N−2}$.

Repeating the induction reasoning used for the case $N−2$, etc., it is possible to prove that the stopping domain $\tilde{\Gamma}_n$ has the structure given in (8) for all $n = N−3, \ldots, 0$. □

Remark. Without \tilde{B}_1 and \tilde{B}_2, the structure of the stopping domains is still as in (8), but in this case, d_n can equal ∞, which means that $\tilde{\Gamma}_n = \emptyset$.

Remark. If the payoff functions $g_n(0) \equiv 0$ for all $n = 0, \ldots, N$, then $d_n = 0$ for all $n = 0, 1, \ldots, N$, by condition \tilde{B}_1.

The following condition guarantees that $d_n > 0$ for all $n = 0, 1, \ldots, N−1$:

\tilde{D}_1: For every $n = 0, \ldots, N−1$,

$$g_n(0) < \min_{\frac{n+1}{n+1} \leq k \leq N} e^{−R_{n+1,k}} g_k(0),$$

where $R_{n+1,k} = r_{n+1} + \cdots + r_k, 1 \leq n+1 \leq k \leq N$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Indeed, by \(\tilde{D}1 \), condition A1, the fact that \(g_{n+1}(x) \) is nondecreasing and that \(g_{n+1}(x) \leq w_{N-(n+1)}(x) \) for all \(x \geq 0 \), we have

\[
g_n(0) < \min_{n+1 \leq k \leq N} e^{-R_{n+1,k}} g_k(0) \leq e^{-r_{n+1}} g_{n+1}(0)
= e^{-r_{n+1}} E g_{n+1}(A_{n+1}(0, Y_{n+1}))
\leq e^{-r_{n+1}} E g_{n+1}(A_{n+1}(x, Y_{n+1}))
\leq e^{-r_{n+1}} E w_{N-(n+1)}(A_{n+1}(x, Y_{n+1}))
= e^{-r_{n+1}} T_{n+1} w_{N-(n+1)}(x)
\]

(23)

for every \(x \geq 0 \).

By continuity of the functions \(g_n(x) \) and \(T_{n+1} w_{N-(n+1)}(x) \), there exists a \(\delta > 0 \) such that for every \(x \in [0, \delta] \): \(g_n(x) > e^{-r_{n+1}} T_{n+1} w_{N-(n+1)}(x) \). Hence, \(d_n > 0 \).

An example of a payoff function that satisfies condition \(\tilde{D}1 \) is

\[
g_n(x) = a_n + b_n x
\]

with \(0 < a_1 < \cdots < a_N \) and \(b_n > 0 \) for all \(n \). Here \(a_n \) can be interpreted as a riskless profit assured by the writer of the option.

Theorem 1 is applied for payoff functions with the following property:

\[
g'_n(x, (+)) > 0, \quad x > 0, \quad n = 0, 1, \ldots, N.
\]

(24)

However, property (24) is not fulfilled by, for example, the standard payoff function \(g_n(x) = |x - K_n|^{+} \) with \(K_n > 0 \) and other payoff functions with the following property:

\[
g_n(x) = 0, \quad 0 \leq x \leq K_n, \quad n = 0, 1, \ldots, N.
\]

(25)

In this case condition \(\tilde{B}1 \) can fail to hold for \(0 < x < K_n \). Hence, Theorem 1 needs to be modified.

We now consider payoff functions with the following additional property.

\(\tilde{G}2 \): For \(n = 0, 1, \ldots, N \), and each \(0 \leq x \leq K_n \), \(g_n(x) = 0 \).

For payoff functions with property \(\tilde{G}2 \) we modify condition \(\tilde{B}1 \) in the following way:

\(\tilde{B}2 \): For every \(n = 0, 1, \ldots, N-1 \), and all \(x \geq K_n \),

\[
g'_n(x, (+)) \geq e^{-r_{n+1}} \left[E g'_{n+1, (+)}(A_{n+1}(x, Y_{n+1})) A'_{n+1, (+)}(x, Y_{n+1})
+ g'_{n+1, (+)}(K_{n+1}) E A'_{n+1, (+)}(x, Y_{n+1})I_{[0, K_{n+1}]}(A_{n+1}(x, Y_{n+1})) \right].
\]

Note that under natural assumptions, for all \(n = 0, \ldots, N-1 \), at point \(x = K_n \) we have

\[
E g'_{n+1, (+)}(A_{n+1}(x, Y_{n+1})) A'_{n+1, (+)}(x, Y_{n+1}) > 0.
\]

In that case \(\tilde{B}2 \) implies that \(g_n(K_n) > 0 \) for every \(n = 0, \ldots, N-1 \). Consider, for example, the payoff function \(g_n(x) = |x - K_n|^{+} \).

Theorem 2. Under conditions A1, A2, G1, G2, B2, E1 and E2, for each

\[
n = 0, 1, \ldots, N-1,
\]

there exists \(0 \leq d_n < \infty \) such that the optimal stopping domain has the one-threshold structure

\[
\Gamma_n = [d_n, \infty).
\]
Proof. The proof is based on the same idea as the proof of Theorem 3, i.e., for each moment \(n = 0, 1, \ldots, N - 1 \), we need to show that the optimal stopping domain \(\hat{\Gamma}_n \) fulfills: (a) \(\hat{\Gamma}_n \neq \emptyset \) and closed; (b) if \(x' \in \hat{\Gamma}_n \), then \(x'' \in \hat{\Gamma}_n \) for any \(x' \leq x'' < \infty \).

Consider moment \(N - 1 \). As in the proof of Theorem 3, using \(\tilde{E}_1 \), we can show that \(\hat{\Gamma}_{N-1} \) is a closed nonempty set, i.e., property (a) holds for the optimal stopping domain \(\hat{\Gamma}_{N-1} \).

Furthermore, \(\hat{\Gamma}_{N-1} \) is bounded below by \(K_{N-1} \). Thus, there exists a point \(d_{N-1} \) such that

\[
K_{N-1} \leq d_{N-1} = \inf \{ x : x \in \hat{\Gamma}_{N-1} \} < \infty.
\]

\(\hat{\Gamma}_{N-1} \) is closed, and therefore \(d_{N-1} \in \hat{\Gamma}_{N-1} \).

By condition \(B2 \) and Lemma 2 for any \(x \geq K_{N-1} \),

\[
\begin{aligned}
g'_{N-1, (+)}(x) &\geq e^{-r_N} \mathbb{E} g'_{N, (+)}(A_N(x, Y_N))A'_{N, (+)}(x, Y_N) \\
&\quad + e^{-r_N} g'_{N, (+)}(s_N) \mathbb{E} A'_{N, (+)}(x, Y_N)I_{[0, K_N]}(A_N(x, Y_N)) \\
&\geq e^{-r_N} \mathbb{E} g'_{N, (+)}(A_N(x, Y_N))A'_{N, (+)}(x, Y_N) \\
&= (e^{-r_N} \mathbb{E} \hat{g}_{N, (+)}(x),
\end{aligned}
\]

since \(g'_{N, (+)}(K_N) > 0 \) and \(A'_{N, (+)}(x, Y_N) > 0 \) with probability 1.

Assume that \(x' \in \hat{\Gamma}_{N-1} \). By this assumption and relation \(26 \), for any \(x' \leq x'' < \infty \),

\[
g_{N-1}(x'') = g_{N-1}(x') + \int_{x'}^{x''} g'_{N-1, (+)}(t) dt \\
\geq e^{-r_N} \mathbb{E} \hat{g}_{N, (+)}(x') + \int_{x'}^{x''} e^{-r_N} (\mathbb{E} \hat{g}_{N, (+)})' (t) dt \\
= e^{-r_N} \mathbb{E} \hat{g}_{N, (+)}(x'').
\]

Thus, (b) holds for \(\hat{\Gamma}_{N-1} \).

Hence, we have proved that \(\hat{\Gamma}_{N-1} \) has the structure described in (8).

Consider now moment \(N - 2 \). As in the proof of Theorem 1, using \(\tilde{E}_1, \tilde{E}_2, \) and the continuity of \(g_{N-2}(x) \) and \(\mathbb{E} \hat{g}_{N-1, w_1} \), we can show that \(\hat{\Gamma}_{N-2} \) is a closed nonempty set.

Since \(\hat{\Gamma}_{N-2} \) is bounded below, there exists a point \(d_{N-2} \) such that

\[
K_{N-2} \leq d_{N-2} := \inf \{ x : x \in \hat{\Gamma}_{N-2} \} < \infty.
\]

\(\hat{\Gamma}_{N-2} \) is closed, and therefore \(d_{N-2} \in \hat{\Gamma}_{N-2} \). By Lemmas 1 and 3 we have

\[
(\mathbb{E} \hat{g}_{N-1, w_1})' (x) = \mathbb{E} [w_1(A_{N-1}(x, Y_{N-1}))]'(x).
\]

We must consider two cases.

First, consider the case \(A_{N-1}(x, Y_{N-1}) \geq d_{N-1} \). This is true if and only if \(x \geq x_* \), where

\[
x_* = \inf \{ x : A_{N-1}(x, Y_{N-1}) \geq d_{N-1} \}.
\]

Then for \(x \geq x_* \),

\[
[w_1(A_{N-1}(x, Y_{N-1}))]'(x) = g'_{N-1, (+)}(A_{N-1}(x, Y_{N-1}))A'_{N-1, (+)}(x, Y_{N-1}).
\]

Second, consider the case \(0 \leq A_{N-1}(x, Y_{N-1}) < d_{N-1} \). This is true if and only if \(x < x_* \). Then for \(x < x_* \),

\[
w_1(A_{N-1}(x, Y_{N-1})) = e^{-r_N} \mathbb{E} \hat{g}_{N}(x) \big|_{x=A_{N-1}(x, Y_{N-1})}.
\]
If \(K_{N-1} \leq A_{N-1}(x, Y_{N-1}) < d_{N-1} \), then by Lemma \(\ref{lem:threshold} \) and by condition \(\tilde{B}_2 \),

\[
[w_1(A_{N-1}(x, Y_{N-1}))]'(+) = e^{-r_{N-1}} \left(T_{N} g_N(z) \right)'(+) \cdot A'_{N-1}(x, Y_{N-1})
= e^{-r_{N-1}} E[g_N'((A_N(x, Y_N)) \cdot A'_{N-1}(z, Y_N)] \cdot A'_{N-1}(x, Y_{N-1})
\leq g_N'(A_{N-1}(x, Y_{N-1})) \cdot A'_{N-1}(x, Y_{N-1}),
\]

where \(z = A_{N-1}(x, Y_{N-1}) \). If

\[
0 \leq A_{N-1}(x, Y_{N-1}) < K_{N-1},
\]

then, by Lemma \(\ref{lem:threshold} \),

\[
[w_1(A_{N-1}(x, Y_{N-1}))]'(+) = e^{-r_{N-1}} \left(\tilde{T}_{N} g_N(z) \right)'(+) \big|_{z=A_{N-1}(x, Y_{N-1})} \cdot A'_{N-1}(x, Y_{N-1})
\leq e^{-r_{N-1}} \left(\tilde{T}_{N} g_N \right)'(+) (K_{N-1}) \cdot A'_{N-1}(x, Y_{N-1})
\leq g_N'(K_{N-1}) A'_{N-1}(x, Y_{N-1}),
\]

since \((\tilde{T}_{N} g_N)'(+) \) is nondecreasing in \(x \) and the last inequality holds by \(\ref{lem:threshold} \).

Thus, by \(\ref{eq:19} \), \(\ref{eq:20} \) and \(\ref{eq:21} \), for any \(x \geq 0 \),

\[
[w_1(A_{N-1}(x, Y_{N-1}))]'(+) \leq g_N'(K_{N-1}) A'_{N-1}(x, Y_{N-1}) + g_N'(x) A'_{N-1}(x, Y_{N-1}) I_{[0, K_{N-1}]} (A_{N-1}(x, Y_{N-1})).
\]

Hence, by condition \(\tilde{B}_2 \), for all \(x \geq K_{N-2} \),

\[
e^{-r_{N-1}} E[w_1(A_{N-1}(x, Y_{N-1}))]'(+) \leq g_N'(x).
\]

Assume that \(x' \in \tilde{\Gamma}_{N-2} \). By this assumption and relation \(\ref{eq:22} \), for any \(x' \leq x'' < \infty \),

\[
g_{N-2}(x'') = g_{N-2}(x') + \int_{x'}^{x''} g'_{N-2}(t) dt
\geq e^{-r_{N-1}} \tilde{T}_{N-1} w_1(x') + \int_{x'}^{x''} e^{-r_{N-1}} \tilde{T}_{N-1} w_1(t) dt
= e^{-r_{N-1}} \tilde{T}_{N-1} w_1(x'').
\]

Thus, \(\textbf{b} \) holds for \(\tilde{\Gamma}_{N-2} \).

Hence, we have proved that \(\tilde{\Gamma}_{N-2} \) has the structure described in \(\ref{eq:11} \).

By repeating the induction reasoning used for the case \(N-2 \), etc., it is possible to prove that the stopping domain \(\tilde{\Gamma}_n \) has the structure given in \(\ref{eq:11} \) for all \(n = N-3, \ldots, 0 \).

\(\square \)

Remark. Let \(0 < K_n < \infty \) for all \(n = 0, \ldots, N \), but assume that condition \(\tilde{G}2 \) does not hold for the payoff functions \(g_n \). Then the following will be known about the structure of the optimal stopping domains:

\[
\tilde{\Gamma}_n \cap [K_n, \infty) = [d_n, \infty).
\]

But we cannot say anything about the structure of the optimal stopping domain below \(K_n \).
In conclusion we would like to make the following general remark. If we know the model of the market price of the option at the intermediate moments, then the problem of the optimal reselling of American type options (either put or call) is a separate and interesting problem. But if we do not possess such a model, but reselling is still possible, then the following advice to the holder of the option can be given. Find the stopping time τ due to the optimal stopping strategy considered in this paper, then compare the market price of the option at moment τ with the exercise payoff at this moment. If the market price is higher, then resell, otherwise exercise the option. Of course such a strategy could be nonoptimal provided the model of the market price of the option is given. But this strategy gives a lower bound of the expected profit in the reselling problem, and the strategy will be optimal in the min-max sense.

Bibliography

Mälardalen University, Box 883, SE-721 23 Västerås, Sweden
E-mail address: henrik.jonsson@mdh.se

Kyiv University, 01033 Kyiv, Ukraine
E-mail address: alexander.kukush@univ.kiev.ua

Mälardalen University, Box 883, SE-721 23 Västerås, Sweden
E-mail address: dmitrii.silvestrov@mdh.se

Received 24/MAY/2004

Originally published in English