Skip to Main Content
Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Some remarks on the ordinal strong law of large numbers


Author: I. K. Matsak
Translated by: Oleg Klesov
Journal: Theor. Probability and Math. Statist. 72 (2006), 93-102
MSC (2000): Primary 60B12
DOI: https://doi.org/10.1090/S0094-9000-06-00667-3
Published electronically: August 18, 2006
MathSciNet review: 2168139
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the ordinal law of large numbers and the law of large numbers in the norm are equivalent for Banach lattices that do not contain uniformly the space $l_1^n$.


References [Enhancements On Off] (What's this?)

References
  • Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015
  • J. Hoffmann-Jørgensen, Probability in $B$-spaces, Matematisk Institut, Aarhus Universitet, Aarhus, 1977. Lecture Notes Series, No. 48. MR 0474447
  • Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
  • L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR 664597
  • I. K. Matsak, The ordinal \lln in Banach lattices, Teor. Imovirnost. Matem. Statist. 62 (2000), 83–95; English transl. in Theory Probab. Math. Stat. 62 (2001), 89–102.
  • William Feller, An introduction to probability theory and its applications. Vol. II., 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
  • William Feller, An introduction to probability theory and its applications. Vol. II., 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
  • A. V. Buhvalov, A. I. Veksler, and V. A. Geĭler, Normed lattices, Mathematical analysis, Vol. 18 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980, pp. 125–184 (Russian). MR 597904
  • Ī. K. Matsak and A. M. Plīchko, On the maxima of independent random elements in a Banach functional lattice, Teor. Ĭmovīr. Mat. Stat. 61 (1999), 105–116 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 61 (2000), 109–120 (2001). MR 1866964
  • Jon A. Wellner, A martingale inequality for the empirical process, Ann. Probability 5 (1977), no. 2, 303–308. MR 436296, DOI https://doi.org/10.1214/aop/1176995856
  • N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability distributions on Banach spaces, Mathematics and its Applications (Soviet Series), vol. 14, D. Reidel Publishing Co., Dordrecht, 1987. Translated from the Russian and with a preface by Wojbor A. Woyczynski. MR 1435288
  • A. V. Skorohod, Sluchaĭ nye protsessy s nezavisimymi prirashcheniyami, Izdat. “Nauka”, Moscow, 1964 (Russian). MR 0182056
  • A. V. Skorohod, Sluchaĭ nye protsessy s nezavisimymi prirashcheniyami, Izdat. “Nauka”, Moscow, 1964 (Russian). MR 0182056
  • Ī. K. Matsak, Estimates for the moments of the supremum of normed sums of independent random variables, Teor. Ĭmovīr. Mat. Stat. 67 (2002), 104–116 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 67 (2003), 115–128. MR 1956624

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60B12

Retrieve articles in all journals with MSC (2000): 60B12


Additional Information

I. K. Matsak
Affiliation: Department of Probability Theory and Mathematical Statistics, Faculty for Mathematics and Mechanics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email: d.i.m.@ukrpost.net

Received by editor(s): January 15, 2004
Published electronically: August 18, 2006
Article copyright: © Copyright 2006 American Mathematical Society