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APPROXIMATION OF A STOCHASTIC INTEGRAL
WITH RESPECT TO FRACTIONAL BROWNIAN MOTION
BY INTEGRALS WITH RESPECT TO ABSOLUTELY CONTINUOUS
PROCESSES
UDC 519.21

T. O. ANDROSHCHUK

ABSTRACT. We consider an absolutely continuous process converging in the mean
square sense to a fractional Brownian motion. We obtain sufficient conditions that
the integral with respect to this process converges to the integral with respect to the
fractional Brownian motion.

1. INTRODUCTION

We consider the process B = (BtH’o‘)t>0
The process B:® approximates the fractional Brownian motion B = (B}f);>¢ in the
mean square sense where H is the Hurst parameter, H € (3,1). The process B# is
introduced in [I] for the problem of estimation of the ruin probability in the case where
an insurance company buys a share described by a fractional Brownian motion or by a
mixed model.

We study the question of sufficient conditions on the process f that guarantee (in a
certain sense) the convergence

b b
(1.1) / f(u)dBH> — / fw)dBf asa —1-.
a a
We use two approaches to answer this question. In Theorem 3] we prove the convergence
E||BT B, =0

whose derivative is continuous on (0, c0).

in the norm of the Besov space W™ [a, b] for A € (0, 3). In SectionEwe obtain a corollary
that convergence (1)) holds in probability if f is a Holder function of order % + ¢ for
some ¢ > 0 (Theorem FI]). Moreover, convergence ([LI) holds in L; if the Hélder norm
of order § + ¢ of the process f is bounded in w € €2 for some ¢ > 0 (Theorem H.2).

Another approach is to obtain explicitly an estimate of the difference between the
integrals in (II]) and to prove the convergence in probability if f is Holder continuous of
order 2(1—H)+¢ (Theorem[51)). Combining these two results we prove convergence (L))
in probability if f is Holder continuous of order

1
min{§,2(1 —H)} +e
for some € > 0.
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2. A PROCESS OF BOUNDED VARIATION THAT APPROXIMATES
FRACTIONAL BROWNIAN MOTION

According to [2], the fractional Brownian motion with Hurst parameter H € (%, 1)
can be represented in the form

t
Btfl :/ 8H71/2 dY;,
0
where
t
(2.1) Y, = co/ (t — s)H=1/251/2H gy,
0

Co = Co(H) > 0 is a nonrandom constant, and W; is a Wiener process with respect to
the flow of o-algebras (F;) = (F{By,u < t}).

Since the fractional Brownian motion is not a semimartingale, it is natural to consider
an approximation of the process B} by “nicer” processes than the fractional Brownian
motion. For example, it is proposed in [I] to substitute the process

1 t as
Y =Ch <H - 5) / [/ (s —u)H=3/2 /21 qu] ds
o LJo

with a € (0,1) for ¥; and take the process

t
BtI-I,a _ / SH71/2 d}/*sa
(2.2) 0

1 t as

=Cyo|H— = / sH=1/2 / (s —u) =324 20 gy, | ds
2)Jo 0

as an approximation of BF. One can show that for B/*® and ¢ € [0, T],

Var (Bl - BI) < K(T.a) - 0",

whence it follows that B, is a continuous process in view of the Kolmogorov criterion.
The process

at
Zta _ tHfl/Q/ (t _ U)H73/2u1/27H dW,,
0

is the derivative of Bf*® within a factor. Moreover
Var (22, — Z¢&) < K(3,T, ) - |h[>7?"

for ¢ € [0, 7] and some § > 0. Since Z;* is a Gaussian process, Theorem IV.5.6 in [3]
implies that Z is a continuous process on [d,T), and thus on (0, 00). Therefore BtH °
has a continuous derivative on (0, 00), and its variation on [§,T], 0 < § < T, is finite.

Proposition 2.1. We have
2
(2.3) E (BtH - BtH"") < Oyt2H (1 — a)2H1,

where C; = C1(H) > 0 is a constant that depends neither on t nor on «.



APPROXIMATION OF A STOCHASTIC INTEGRAL 21

Proof. Using the stochastic Fubini theorem (see Theorem IV.4.5 in [4]) we represent the
process Y;* as follows:

t as
Y =C H—l S—uH_S/Qul/Z_Hqu ds
! 2)Jo Lo
1 at t .
=Co(H - (s —u)T=3/2 ds| />~ H aw,
(2.4) 2) J; ,

at 1_ H-1/2
=C)y (/ (t— u)Hﬁl/zul/%H AW, — < - a) Wat> )
0

t

e - v = cie( |

" 1 g\ 2H1
= Cg/ (t— u)2H71u1*2H du + C’g < . > (at)

¢
<Ct(1—a)?H L,
The integration by parts formula yields
Bf — B =" (v, — Y1) — lim V2 (V. - YY)
E—

1 t
— (H — 5) / (Y, — Y2) =32 s,
0

2 1 2 + ‘
E (Bg{ *BtH’a> <2HLE(Y, - Y2)? +2 (H 2) t/o E(Y, — Y)? s2H3 s

2 t
<20(1 —)?-1 (tgH + (H - %) t/ g2 =2 ds)
0

— CltZH(l _ O[)2H71
by @2.3). O

3. CONVERGENCE B#® — BH 1N THE NORM OF THE SPACE W™![a, b]

Thus

O\ H-1/2 2
(t —u)H =120/ 2=H g, + <1a> Wat)
«

t

(2.5)

whence

Following [5], we denote by W*[a,b], A € (O, %), the space of measurable functions
fila, 0] = R

I ANO] P17 1f(s) = F(y)l
||f|,\,1—/a (s—a)/\ds—i_/a P dy ds < oo.

By W!'=*>[q, b] we denote the space of measurable functions g: [a,b] — R such that

9l 200 = sup (w v W@) -

a<s<t<b

such that

We have

C'=Ae(a,b] ¢ WA [a,b] € O a, b]
for all £ > 0, where C*[a, b] denotes the space of Hélder continuous functions of order A
equipped with the norm

Il = sup [F0)]+ sup LW =S

u€la,b] u,v€a,b] |U — ’U‘A
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It follows from [5] that the generalized Stieltjes integral fab f dg exists and

b
3.1) /fMSCOHﬂMMMAm

in the case of f € W*1[a,b] and g € W1~ °[a, b].
Theorem 3.1. For all A € (0, %), He (%, 1), and all intervals [a,b] C [0,T],
E(|BY — Bf2|, | <CHANT)-(1-a)"72 forae(1/2,1).

Proof. Let
AB/* = Bl — ',
It follows from the definition of the norm ||-[|, ; that

N b ABHa |ABH0¢ ABHa|
32 |aB"e|,, - / |aB7e| | / / S dyds

Using estimate ([23) we get

b |ABH ABHCY b H
Ny R S ey
a S_ a

a) (s—a) (s —a)*

< C(HMNT)(1—a)f=1/2,
Consider the second term in ([.2]). We rewrite the numerator as follows:
H,« H,« H H,« H H,«
ABS " —AB" = (B — B )—(By - B, )

(33) = (Bf 7B£I) - (Bf)a 7B35{’a)
:/ V24 (Y, Y.
Yy

Put
AYS =Y, — YO
Using the integration by parts formula we obtain from (3.3 that

|ABHa_ BH,a‘
// YL dy ds
s [$HT1ZAYY <y HRAY Y (H = ) [ AYult
://) (- v
H 1/2‘Aya Aya H 1/2 _ H 1/2 |Aya|
// P dyds—i—/a/a P dy ds

+(H__)// f |AY"‘|U;I\:1’/2dudyds
= Ii(a) + I(a) + (H —1/2) - Is(a).

We estimate the expectation of Is(a) with the help of bound (Z3):
b rs (SH—l/Z_ H— 1/2 |AYa 71/2 H-3/2 E(AY;‘)Q
E// dyds<// dyds
(s —y)M! (s —y)*

H-1 1_ H-1/2
// il ;‘2 dyds < C(H,\,T)(1— o) ~1/2,
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VE(AY2) w32y
// f dyds

Similarly

A—l—l

f w1 dy
<C(1—a)fi~ 1/2// [ dy ds

<CHMNT)(1—a)f~ 1/2

Using representations (ZI) and (24) for Y; and Y, we get an estimate for I;(«):

SH— 1/2 F(s)+ (152)" 712 Was) _ (F(y) +(2)" 7 Wo‘y)‘

CO// (s — y) M1

sH— 1/2 F _F
<C’0// | >\+1 W 4y s

_ H 1/2 sH=1/2 W _
+Co( ) // | as)\+1 ay|dyds

= Li(@) + Is()

where
/x _ U)H_1/2U1/2_H qu
@

Furthermore,

_ H-1/2 H 1/2EW _
Els(a) = Co< ) // | AT y‘dyds

<c( Hl/Q// Hm dy ds
(s —y)r+1/2 Y

yH - 1/2

<C(H,NT)(1-
is essential for the latter estimate. To estimate E Iy(«) we

Note that the bound A < %
split the integral with respect to the variable y into two parts:

SHE[ 2 (55w g2, ()

Ely(a // (s — y)M i

Gy, )) ul—2H dy,
dy ds

GH— 1/2\/f
// (Ve S_S«WH £y, s, @)
:/a SH—1/2 (/a +/(as)va> (5_?;);“ dy ds

s Ji(a) + J2(a),

- dy ds

where

Gz, u) = (z —w) T~V 1 [az, z](u).
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On the corresponding intervals of integration, the function £(y, s, &) can be represented
as follows:

Y s
/ (y_u)2H71u172H du—l—/ (S _u)2H71u172H du

Y as

1
=(y+ 5)/ (1 — w)?H =11 =21 gy, for y < as;
«s o
/ (y _ U)2H_1U1_2H du
«

Y
v 2
+ / (5 w72 — (g — )T H2) =2

S

_|_/ (5 _U)ZH—lul—ZH du
Y

=: f(y, s, @), for y > as.

£y, s, ) =

The term Ji(«) is estimated as follows:

(as)Va \/ y + 8 1 _ u)ZH 1yl=2H 4y,
H-1
Ji(a) :/ /2 / (sfy))‘“ dy ds

b aV(a/s
w)2H-1y1=2H gy [ H=2 gs (afe) VYt dy
a a/s (1 - y))\+1

<CHNT)(1-a)T™* asa e (1/2,1).

Now we show that
(3.4) £y, s,0) < CH)(1 - a)* (s —y)

for y > as. This inequality is implied by the following estimates for the terms of € (y,s,q):

/ (y — w7 du < (y — ay)* ! ay) 7 (as — ay)
ay

<(1-a) (s —y),

C
=C(H)s" (s —y) (y —as)® " = (s —as)* 7 4 (s —y)*" )
CH)1-a)"Ys—y) asae(1/2,1),

/ (s—u)2H_1u1_2H du < (S—OéS)2H_1(OéS)1_2H(S—y)
Y

<211 —a)?H (s —y) asa € (1/2,1).
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Applying (B4) we estimate the term Jo(a):
b s
Ja(a) < C(H)(1 - a)Hﬁl/z/ stl/z/ (s —y) V2 dyds
a (as)Va

b 1
< C(H)(1 - a)H*W/ sH*Ads/ (1—y) 2 Y2dy < CH\T)(1 —a)=

Note again that the bound A < % is essential for the latter relation.
This completes the proof of the theorem. O

4. CONVERGENCE OF INTEGRALS

Consider the stochastic integral with respect to the fractional Brownian motion

b
| wast.
Proposition 4.1. Let
(4.1) fewye |J Moyl
A>S1—H

for almost all w € Q. Then the integral

/ f(u,w) dBH(w) = lim Zf ( 1+1( )—B{i(w))

\7r|—>0
exists almost surely as the RzemannfStzeltjes integral, where the convergence is uniform
with respect to all finite partitions
mi={a=uo <ug <up <wj <o <upoy <y <y =bY
with 7] = max; |u;+1 — gl
Proof. The Riemann—Stieltjes integral fab f dg exists in the deterministic case for f € C*
and g € C* if A+ p > 1 (see Theorem 4.2.1 in [6]). Thus Proposition 1] follows, since

the trajectories of the process Bf! belong to C*~[a,b] = (., C*[a, b] with probability
one. (]

Therefore one can apply the integration by parts formula to both integrals ff f(u)dBH
and f; f(u) dBE-« if condition (@I holds. If one assumes that
f et eq,b] ¢ W/2He/2o0 g p]

with probability one, then estimate (BI) and the integration by parts formula imply

(8l - )

< |fta) (B - B")

+|rer B - ™)

+C HBH - BH’Q||(1/275/2)71 ||f||(1/2+8/2),<>0 ’

Using the latter inequality, estimate (23), and Theorem B.I] we obtain the following
results.

Theorem 4.1. Let f € C'/?%%[a,b] with probability one for some € > 0. Then

b b
/ f(u)dBe — / f(uw)dBE in probability as o — 1—.
a a
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Theorem 4.2. Suppose that
(1) for some e > 0 there exists a constant C > 0 such that

Ifllcrreeparn <€
with probability one;
(2) the random variables f(a) and f(b) have finite second moments.
Then

E

-0 asa— 1—.

/a  fluyaBy - / ' fluyapito

5. ESTIMATION OF INTEGRAL CONVERGENCE IN TERMS OF RIEMANNIAN SUMS

Theorem 5.1. Let f: [a,b] x Q = R, 0 < a < b, satisfy
(5.1) fle.w) = fy.w)| < K(w) o -y 707

for some e > 0, P-almost all w € Q, and all a < x < y < b, where K(w) is a finite
random variable. Then

b b
(5.2) / f(u)dBe — / f(u)dBE in probability as o — 1—.

Proof. To show, simultaneously with the proof of Theorem [5.]], that its result cannot in
a certain sense be improved, we assume that

(5-3) |f(@,w) = fly,w)] < K() o=y

For A > 0 introduce the function
fa(u) =" flur) Vug, uer1)(w),  welab),  fa(b) = f(un),
k=0

where

n=mn(A)= [b—a]’
ug = uk(A)=a+ kA, k=0,...,n, Upy1 = b.

For all A > 0, we have

" pyasie — [ fuyasr
/ /

<

(5.4) = +

/ (f(u) — fa(u)) dBH / fa(u)d(BH> — BH)

b
+ / (fau) — f(u)dBI

= Il(A,Oé) =+ IQ(A,O[) —+ Ig(A)

Put A = A(a) = (1 — a)" and choose r > 0 such that the first and second terms in (5.4)
converge to zero as o — 1— with the minimal A in (&3)). The optimal (minimal) A
coincides with the Holder exponent in (B.I)). Since 2(1 — H) > 1 — H, the third term
in (B4) converges to zero in probability in view of Proposition ] for the specified r > 0.
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Consider I (A, a). It follows from condition (5.3) and definition (2] of the process
B that

b
(A ) = / (F(u) — fa(u) dBHe

Z/Uk+l (Hl// H3/2 1/2 HdW)d

< CKZ W1 — uk)/\+a/ w172

k=0
= CK -(1(A, ).

=C

/ H3/2 1/2 HdW‘d’U/

The expectation of (i (A, @) is estimated as follows:

ECl(A,Oé)SAM_EZ/uk - 1/2E’/ y)H=3/2y1/2=H gy ’ du
n Ukt
SAA+52/ wH- 1/2\// y)2H=3y1=2H dy dy,
k=0 "k

_ A)H—E a(l _ 2H—-3,1-2H d s H-1 d
Y) Yy Yy u u
0 k=0 " Uk

< OAME (14 (1—a)2H-2)'2
Substituting A(a) = (1 —a)” we get
(5.6) EG(A(a),0) =0 <(1 _ a)r(k+s)+(H—l)> C a— -

(5.5)

Now we consider I (A, a):

o) = 30 st (8l - B - (02 - L)
k=0

(5.7) < |7 (Bl = BE)|+ 37| flunsn) = fw)| - [Bie, - BE,
k=0

+|rerB - Bl
=& (o) + &(A, a) + £5(a).

Since B{"* — BF — 0 in probability for ¢ > 0, the first and third terms in (5.7) converge
in probability to zero. Estimating &3(A, o) we obtain from (B.3]) that

&(A,0) < K3 (ugsr —up) " ‘BH o _gH

Uk+1 Uk+1
k=0

To estimate the expectation of (2(A, ) we obtain from (Z3]) that
- b—a
H,a —
EG(A,a) < AM* k§70j \/ Bum BH) <CAME(1— )12 ({A] + 1) .

Substituting A(a) = (1 — «)” we get
(5.8) E¢(A(a),a) =0 ((1 _ a)r(/\fl+a)+(H71/2)>  a—1-.

= K- CQ(Aaa)'
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Now we find restrictions on 7 and A such that the random variables (1 (A(a), ) and
(s (A(oz)7 a) converge to zero in L which implies the convergence in probability to zero
of the first two terms in (B4]). One can derive these restrictions from relations (5.0])

and (5.8):

rA+ (H—-1) >0,
(5.9) 1
r(A=1)+ (H—-3) >0.
Solving (B.9) as an extremal problem A — min for » € (0,1) we find that A attains its

minimal value if r = % and that this minimal value coincides with 2(H — 1). Thus all

the terms in (.4 converge in probability to zero if condition (5I]) holds and
Ala) = (1 —a)'/2,
This completes the proof of the theorem. |

Corollary 5.1. Combining Theorems 1] and 511 we prove that the convergence
b b
/ f(u)dBHe — / f(u)dBX in probability as o — 1—

if, for some € > 0, the trajectories of the process f belong to the class C* <[a,b] with
probability one, where g = min{%, 2(1— H)}

It also turns out that Theorem Bl is stronger for H < %, while Theorem 5.1 is stronger
for H > %.

Remark 5.1. One can study other approximations of the fractional Brownian motion
BH-o for which (5.2)) holds under other assumptions. For example, one can prove that

- 2
E(Bf - B/") =0 asa—0+

for the process

t
B{La :/0 SH—1/2d§vSa,

B 1 t (S*Q).{_
Y, =Cy <H - 2) / / (s —u)H=3/2412=H qw, | ds.
o |Jo

Here (z)+ = max(z,0).
Note also that the process BtH *“ has continuous derivative on [0,00) for a fixed a.
This, of course, means that its variation on [0, 7] is finite for any T > 0.

where

An analog of Theorem [5.1] can be proved for the process B7+*. Namely,
b b
/ f(u)dBHe — / f(u)dB in probability as a — 0+
if f e c?2=H+e[q p] for some € > 0.

6. CONCLUDING REMARKS

e’

We considered an absolutely continuous process BtH converging to the fractional
Brownian motion B! in L;. The derivative of Bf "“ is continuous on (0, 00). We proved
that B — BF in the mean in the Besov space W*1[a, b] as & — 1—. We also obtained
sufficient conditions for the convergence of integrals f; fu)dBE> — f; f(u)dBH as
a — 1— in L; and in probability.



APPROXIMATION OF A STOCHASTIC INTEGRAL 29

BIBLIOGRAPHY

1. Yu. S. Mishura, An estimate of ruin probabilities for long range dependence models, Teor.
Imovir. Mat. Stat. 72 (2005), 93-100; English transl. in Theor. Probability and Math. Statist.
72 (2005), 103-111. MR2168140

2. L. Norros, E. Valkeila, and J. Virtamo, An elementary approach to a Girsanov formula and other
analytical results on fractional Brownian motions, Bernoulli 55 (1999), 571-587. MR1704556
(2000£:60053)

3. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, Second
edition, “Nauka”, Moscow, 1977; English transl. of the first edition, Scripta Technica, Inc. W.
B. Saunders Co., Philadelphia—London—Toronto, 1969. MR0488196/| (58:7758)

4. P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, New York, 1990.
MR1037262(911:60148)

5. D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion,
Collect. Mat. 53 (2002), no. 1, 55-81. MR 1893308/(2003:60105)

6. M. Zahle, Integration with respect to fractal functions and stochastic calculus. Part I,
Probab. Theory Related Fields 111 (1998), 33—372. MR1640795/ (99j:60073)

DEPARTMENT OF PROBABILITY THEORY AND MATHEMATICAL STATISTICS, FACULTY FOR MATHEMATICS
AND MECHANICS, NATIONAL TARAS SHEVCHENKO UNIVERSITY, ACADEMICIAN GLUSHKOV AVENUE 6, Ky1v
03127, UKRAINE

E-mail address: nutaras@univ.kiev.ua

Received 11/0CT /2004

Translated by V. V. SEMENOV


http://www.ams.org/mathscinet-getitem?mr=2168140
http://www.ams.org/mathscinet-getitem?mr=1704556
http://www.ams.org/mathscinet-getitem?mr=1704556
http://www.ams.org/mathscinet-getitem?mr=0488196
http://www.ams.org/mathscinet-getitem?mr=0488196
http://www.ams.org/mathscinet-getitem?mr=1037262
http://www.ams.org/mathscinet-getitem?mr=1037262
http://www.ams.org/mathscinet-getitem?mr=1893308
http://www.ams.org/mathscinet-getitem?mr=1893308
http://www.ams.org/mathscinet-getitem?mr=1640795
http://www.ams.org/mathscinet-getitem?mr=1640795

	1. Introduction
	2. A process of bounded variation that approximatesfractional Brownian motion
	3. Convergence BH,BH in the norm of the space W,1[a,b]
	4. Convergence of integrals
	5. Estimation of integral convergence in terms of Riemannian sums
	6. Concluding remarks
	Bibliography

