Random attractor for the reaction-diffusion equation perturbed by a stochastic càdlàg process
Authors:
O. V. Kapustyan, J. Valero and O. V. Pereguda
Translated by:
S. Kvasko
Journal:
Theor. Probability and Math. Statist. 73 (2006), 57-69
MSC (2000):
Primary 34F05, 60H10
DOI:
https://doi.org/10.1090/S0094-9000-07-00681-3
Published electronically:
January 17, 2007
MathSciNet review:
2213841
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study a stochastically perturbed reaction-diffusion equation by using the methods of the theory of stochastic attractors. It is proved that solutions of the equation form a multivalued random dynamic system for which there exists a random attractor in the phase space.
References
- Ludwig Arnold, Random dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1723992
- I. I. Gikhman, I. I. Gihman, and A. V. Skorokhod, Vvedenie v teoriyu sluchaĭ nykh protsessov, Izdat. “Nauka”, Moscow, 1977 (Russian). Second edition, revised. MR 0488196
- A. V. Babin and M. I. Vishik, Attraktory èvolyutsionnykh uravneniĭ, “Nauka”, Moscow, 1989 (Russian). MR 1007829
- A. V. Kapustyan, Global attractors of a nonautonomous reaction-diffusion equation, Differ. Uravn. 38 (2002), no. 10, 1378–1381, 1438–1439 (Russian, with Russian summary); English transl., Differ. Equ. 38 (2002), no. 10, 1467–1471. MR 1984456, DOI https://doi.org/10.1023/A%3A1022378831393
- Hans Crauel and Franco Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields 100 (1994), no. 3, 365–393. MR 1305587, DOI https://doi.org/10.1007/BF01193705
- Hans Crauel, Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat. Pura Appl. (4) 176 (1999), 57–72. MR 1746535, DOI https://doi.org/10.1007/BF02505989
- Klaus Reiner Schenk-Hoppé, Random attractors—general properties, existence and applications to stochastic bifurcation theory, Discrete Contin. Dynam. Systems 4 (1998), no. 1, 99–130. MR 1485366, DOI https://doi.org/10.3934/dcds.1998.4.99
- T. Caraballo, J. A. Langa, and J. Valero, Global attractors for multivalued random dynamical systems, Nonlinear Anal. 48 (2002), no. 6, Ser. A: Theory Methods, 805–829. MR 1878338, DOI https://doi.org/10.1016/S0362-546X%2800%2900216-9
- Jean-Pierre Aubin and Hélène Frankowska, Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1048347
References
- L. Arnold, Random Dynamical Systems, Springer, Berlin, 1998. MR 1723992 (2000m:37087)
- I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, “Nauka”, Moscow, 1977; English transl. of the first edition, Scripta Technica, Inc. W. B. Saunders Co., Philadelphia, Pa.–London–Toronto, Ont., 1969. MR 0488196 (58:7758)
- A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, “Nauka”, Moscow, 1989; English transl., North-Holland Publishing Co., Amsterdam, 1992. MR 1007829 (92f:58101)
- A. V. Kapustyan, Global attractors of a nonautonomous reaction-diffusion equation, Differ. Uravn. 38 (2002), no. 10, 1378–1382; English transl. in Differ. Equ. 38 (2002), no. 10, 1467–1471. MR 1984456 (2004g:35028)
- H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields 100 (1994), 365–393. MR 1305587 (95k:58092)
- H. Crauel, Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat. Pura Appl. 126 (1999), no. 4, 57–72. MR 1746535 (2000m:37090)
- K. R. Schenk-Hoppe, Random attractors—general properties, existence and applications to stochastic bifurcation theory, Discrete Contin. Dyn. Syst. 4 (1998), no. 1, 99–130. MR 1485366 (98h:34103)
- T. Caraballo, J. A. Langa, and J. Valero, Global attractors for multivalued random dynamical systems, Nonlinear Anal. 48 (2002), 805–829. MR 1878338 (2003a:37068)
- J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990. MR 1048347 (91d:49001)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
34F05,
60H10
Retrieve articles in all journals
with MSC (2000):
34F05,
60H10
Additional Information
O. V. Kapustyan
Affiliation:
Department of Integral and Differential Equations, Faculty for Mathematics and Mechanics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email:
alexkap@univ.kiev.ua
J. Valero
Affiliation:
Universidad Miguel Hernandez, Centro de Investigation Operativa, Avda. del ferrocarril s/n 03202 Elche (Alicante), Spain
Email:
jvalero@umh.es
O. V. Pereguda
Affiliation:
Department of Integral and Differential Equations, Faculty for Mathematics and Mechanics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email:
perol@ua.fm
Received by editor(s):
August 24, 2004
Published electronically:
January 17, 2007
Article copyright:
© Copyright 2007
American Mathematical Society