Tauberian theorems for random fields with an $OR$ spectrum. I
Author:
A. Ya. Olenko
Translated by:
Oleg Klesov
Journal:
Theor. Probability and Math. Statist. 73 (2006), 135-149
MSC (2000):
Primary 60G60, 62E20, 40E05; Secondary 60F05, 26A12, 44A15
DOI:
https://doi.org/10.1090/S0094-9000-07-00688-6
Published electronically:
January 17, 2007
MathSciNet review:
2213848
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We obtain Abelian and Tauberian theorems describing a relationship between the asymptotic behavior at the origin of the spectrum of a random field and that at infinity of the integral of the random field over a sphere or a ball. We consider the case of homogeneous isotropic fields with singular spectra at the origin. The asymptotic behavior is given in terms of $OR$ functions.
References
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. MR 1015093
- Michel Broniatowski and Aimé Fuchs, Tauberian theorems, Chernoff inequality, and the tail behavior of finite convolutions of distribution functions, Adv. Math. 116 (1995), no. 1, 12–33. MR 1361477, DOI https://doi.org/10.1006/aima.1995.1062
- J. L. Geluk, Abelian and Tauberian theorems for $0$-regularly varying functions, Proc. Amer. Math. Soc. 93 (1985), no. 2, 235–241. MR 770528, DOI https://doi.org/10.1090/S0002-9939-1985-0770528-5
- G. Laue, Tauberian and abelian theorems for characteristic functions, Teor. Veroyatnost. i Mat. Statist. 37 (1987), 78–92, 136 (Russian). MR 913912
- N. N. Leonenko and A. V. Ivanov, StatisticheskiÄ analiz sluchaÄ nykh poleÄ, “Vishcha Shkola”, Kiev, 1986 (Russian). With a preface by A. V. Skorokhod. MR 917486
- N. N. Leonenko and A. Ya. Olenko, Tauberian and Abelian theorems for the correlation function of a homogeneous isotropic random field, Ukrain. Mat. Zh. 43 (1991), no. 12, 1652–1664 (Russian, with Ukrainian summary); English transl., Ukrainian Math. J. 43 (1991), no. 12, 1539–1548 (1992). MR 1172306, DOI https://doi.org/10.1007/BF01066693
- N. N. Leonenko and A. Ya. Olenko, Tauberian theorems for correlation functions and limit theorems for spherical averages of random fields, Random Oper. Stochastic Equations 1 (1993), no. 1, 57–67. MR 1254176, DOI https://doi.org/10.1515/rose.1993.1.1.57
- Nikolai Leonenko, Limit theorems for random fields with singular spectrum, Mathematics and its Applications, vol. 465, Kluwer Academic Publishers, Dordrecht, 1999. MR 1687092
- Chunsheng Ma, Long-memory continuous-time correlation models, J. Appl. Probab. 40 (2003), no. 4, 1133–1146. MR 2012691, DOI https://doi.org/10.1239/jap/1067436105
- A. A. Malyarenko, Abelian and Tauberian theorems for random fields on two-point homogeneous spaces, Teor. Ĭmovīr. Mat. Stat. 69 (2003), 106–118 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 69 (2004), 115–127 (2005). MR 2110910, DOI https://doi.org/10.1090/S0094-9000-05-00619-8
- A. Ya. Olenko, Tauberian and Abelian theorems for random fields with strong dependence, Ukraïn. Mat. Zh. 48 (1996), no. 3, 368–382 (Ukrainian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 48 (1996), no. 3, 412–427 (1997). MR 1408658, DOI https://doi.org/10.1007/BF02378535
- B. A. Rogozin, A Tauberian theorem for increasing functions of dominated variation, Sibirsk. Mat. Zh. 43 (2002), no. 2, 442–445, iii (Russian, with Russian summary); English transl., Siberian Math. J. 43 (2002), no. 2, 353–356. MR 1902831, DOI https://doi.org/10.1023/A%3A1014757424289
- B. A. Rogozin, Tauberian theorems for dominatedly varying decreasing functions, Teor. Veroyatnost. i Primenen. 47 (2002), no. 2, 357–363 (Russian, with Russian summary); English transl., Theory Probab. Appl. 47 (2003), no. 2, 351–357. MR 2001841, DOI https://doi.org/10.1137/S0040585X97979718
- Andrew L. Rukhin, Statistical estimation of exponential-type functions: admissibility and Tauberian theorems, J. Math. Anal. Appl. 191 (1995), no. 2, 346–359. MR 1324018, DOI https://doi.org/10.1006/jmaa.1995.1134
- M. Ĭ. Yadrenko, Spectral theory of random fields, Translation Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1983. Translated from the Russian. MR 697386
References
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Reprint of the second (1944) edition, Cambridge University Press, Cambridge, 1995. MR 1349110 (96i:33010)
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1989. MR 1015093 (90i:26003)
- M. Broniatowski and A. Fuchs, Tauberian theorems, Chernoff inequality, and the tail behavior of finite convolutions of distribution functions, Adv. Math. 116 (1995), 12–33. MR 1361477 (96k:60034)
- J. L. Geluk, Abelian and Tauberian theorems for $0$-regularly varying functions, Proc. Amer. Math. Soc. 93(2) (1985), 235–241. MR 770528 (86d:44001)
- G. Laue, Tauberian and Abelian theorems for characteristic functions, Teor. Veroyatn. Mat. Stat. 37 (1987), 78–92; English transl. in Theory Probab. Math. Statist. 37 (1988), 89–103. MR 913912 (89a:60044)
- A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, “Vyshcha shkola”, Kiev, 1986; English transl., Kluwer Academic Publishers, Dordrecht, 1989. MR 917486 (89e:62125)
- N. N. Leonenko and A. Ya. Olenko, Tauberian and Abelian theorems for the correlation function of a homogeneous isotropic random field, Ukrain. Mat. Zh. 43 (1991), no. 12, 1652–1664; English transl. in Ukrainian Math. J. 43 (1992), no. 12, 1539–1548. MR 1172306 (93f:60069)
- N. N. Leonenko and A. Ya. Olenko, Tauberian theorems for correlation functions and limit theorems for spherical averages of random fields, Random Oper. Stochastic Equations 1 (1993), no. 1, 57–67. MR 1254176 (95a:60068)
- N. N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum, Kluwer Academic Publishers, Dordrecht–Boston–London, 1999. MR 1687092 (2000k:60102)
- C. Ma, Long-memory continuous-time correlation models, J. Appl. Prob. 40 (2003), 1133–1146. MR 2012691 (2005a:62200)
- A. A. Malyarenko, Abelian and Tauberian theorems for random fields on two-point homogeneous spaces, Teor. Ĭmovīr. Mat. Stat. 69 (2003), 106–118; English transl. in Theory Probab. Math. Statist. 69 (2004), 115–127. MR 2110910 (2006e:60067)
- A. Ya. Olenko, Tauberian and Abelian theorems for strongly dependent random fields, Ukrainian Math. J. 48 (1996), no. 3, 368–383. MR 1408658 (97k:60143)
- B. A. Rogozin, A Tauberian theorem for increasing functions of dominated variation, Sibirsk. Mat. Zh. 43 (2002), no. 2, 442–445; English transl in Siberian Math. J. 43 (2003), no. 2, 353–356. MR 1902831 (2003f:40010)
- B. A. Rogozin, Tauberian theorems for decreasing functions of dominated variation, Theory Probab. Appl. 47 (2002), no. 2, 351–357. MR 2001841 (2004f:26003)
- A. L. Rukhin, Statistical estimation of exponential-type functions: Admissibility and Tauberian theorems, J. Math. Anal. Appl. 191 (1995), 346–359. MR 1324018 (96b:62046)
- M. I. Yadrenko, Spectral Theory of Random Fields, Optimization Software, New York, 1983. MR 697386 (84f:60003)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60G60,
62E20,
40E05,
60F05,
26A12,
44A15
Retrieve articles in all journals
with MSC (2000):
60G60,
62E20,
40E05,
60F05,
26A12,
44A15
Additional Information
A. Ya. Olenko
Affiliation:
Department of Probability Theory and Mathematical Statistics, Faculty for Mathematics and Mechanics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email:
olenk@univ.kiev.ua
Keywords:
Tauberian theorem,
Abelian theorem,
slowly varying functions,
$OR$ functions,
random fields,
homogeneous fields,
isotropic fields,
functionals of a random field,
spectral function,
correlation function,
asymptotic behavior,
strong dependence
Received by editor(s):
February 1, 2005
Published electronically:
January 17, 2007
Additional Notes:
Supported by the NATO grant # SA(PST.CLG.976361)5437
Article copyright:
© Copyright 2007
American Mathematical Society