Tauberian theorem for fields with an $OR$ spectrum. II
Author:
A. Ya. Olenko
Translated by:
V. V. Semenov
Journal:
Theor. Probability and Math. Statist. 74 (2007), 93-111
MSC (2000):
Primary 60G60, 62E20, 40E05; Secondary 60F05, 26A12, 44A15
DOI:
https://doi.org/10.1090/S0094-9000-07-00700-4
Published electronically:
June 29, 2007
MathSciNet review:
2336781
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We consider homogeneous isotropic random fields whose spectra have some local singular properties. We prove Abelian and Tauberian theorems linking the local behavior of the spectral function and that of weighted integral functionals of random fields. Representations of weight functions in the form of the Hankel transform and series of functions are obtained. The asymptotic behavior is described in terms of functions of the class $OR$. Some examples are given.
References
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. MR 1015093
- S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies, No. 19, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1949. MR 0031582
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- G. Laue, Tauberian and abelian theorems for characteristic functions, Teor. Veroyatnost. i Mat. Statist. 37 (1987), 78–92, 136 (Russian). MR 913912
- N. N. Leonenko and A. V. Ivanov, StatisticheskiÄ analiz sluchaÄ nykh poleÄ, “Vishcha Shkola”, Kiev, 1986 (Russian). With a preface by A. V. Skorokhod. MR 917486
- Nikolai Leonenko, Limit theorems for random fields with singular spectrum, Mathematics and its Applications, vol. 465, Kluwer Academic Publishers, Dordrecht, 1999. MR 1687092
- Francis J. Narcowich and Joseph D. Ward, Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices, J. Approx. Theory 69 (1992), no. 1, 84–109. MR 1154224, DOI https://doi.org/10.1016/0021-9045%2892%2990050-X
- A. Ya. Olenko, A Tauberian theorem for fields with the OR spectrum. I, Teor. Ĭmovīr. Mat. Stat. 73 (2005), 120–133 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 73 (2006), 135–149. MR 2213848, DOI https://doi.org/10.1090/S0094-9000-07-00688-6
- M. Ĭ. Yadrenko, Spectral theory of random fields, Translation Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1983. Translated from the Russian. MR 697386
References
- A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953. MR 0058756 (15:419i)
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, 1989. MR 1015093 (90i:26003)
- S. Bochner and K. Chandrasekharan, Fourier Transforms, Princeton University Press, 1949. MR 0031582 (11:173d)
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England, 1944. MR 0010746 (6:64a)
- G. Laue, Tauberian and Abelian theorems for characteristic functions, Teor. Veroyatnost. Matem. Statist. 37 (1987), 78–92; English transl. in Theor. Probability Math. Statist. 37 (1988), 89–104. MR 913912 (89a:60044)
- A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, “Vyshcha shkola”, Kiev, 1986; English transl., Kluwer Academic Publishers Group, Dordrecht, 1989. MR 917486 (89e:62125); MR 1009786 (90g:62235)
- N. N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum, Kluwer Academic Publishers, Dordrecht–Boston–London, 1999. MR 1687092 (2000k:60102)
- F. J. Narcowich and J. D. Ward, Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices, J. Approx. Theory 69 (1992), 84–109. MR 1154224 (93c:41005)
- A. Ya. Olenko, Tauberian theorems for random fields with an $OR$ spectrum. I, Teor. Imovirnost. Matem. Statist. 73 (2005), 120–133; English transl. in Theor. Probability Math. Statist. 73 (2006), 135–149. MR 2213848
- M. I. Yadrenko, Spectral Theory of Random Fields, Optimization Software Inc., New York, 1983. MR 697386 (84f:60003)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60G60,
62E20,
40E05,
60F05,
26A12,
44A15
Retrieve articles in all journals
with MSC (2000):
60G60,
62E20,
40E05,
60F05,
26A12,
44A15
Additional Information
A. Ya. Olenko
Affiliation:
Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Volodymyrs’ka Street, 64, Kyiv 01033, Ukraine
Email:
olenk@univ.kiev.ua
Keywords:
Tauberian theorem,
Abelian theorem,
slowly varying functions,
$OR$ class of functions,
random fields,
homogeneous fields,
isotropic fields,
functionals of a random field,
spectral function,
correlation function,
asymptotics,
strong dependence,
Hankel transform,
Bessel functions
Received by editor(s):
February 1, 2005
Published electronically:
June 29, 2007
Article copyright:
© Copyright 2007
American Mathematical Society