Mixed empirical stochastic point processes in compact metric spaces. I
Authors:
Yu. I. Petunin and M. G. Semeĭko
Translated by:
V. V. Semenov
Journal:
Theor. Probability and Math. Statist. 74 (2007), 113-123
MSC (2000):
Primary 60G55
DOI:
https://doi.org/10.1090/S0094-9000-07-00701-6
Published electronically:
June 29, 2007
MathSciNet review:
2321193
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We study models of finite mixed empirical ordered point processes in compact metric spaces constructed from samples without repetition. We introduce the notion of the generating sequence of the probability measure of an ordered point process. A multidimensional family of distributions is constructed that completely determines the probability distribution of an ordered point process. An example is considered where we evaluate multidimensional distributions.
References
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- A. A. Borovkov, Teoriya veroyatnosteĭ, 2nd ed., “Nauka”, Moscow, 1986 (Russian). MR 891184
- Klaus Matthes, Johannes Kerstan, and Joseph Mecke, Infinitely divisible point processes, John Wiley & Sons, Chichester-New York-Brisbane, 1978. Translated from the German by B. Simon; Wiley Series in Probability and Mathematical Statistics. MR 0517931
- V. S. Koroljuk, N. I. Portenko, A. V. Skorohod, and A. F. Turbīn, Spravochnik po teorii veroyatnosteĭ i matematicheskoĭ statistike, “Naukova Dumka”, Kiev, 1978 (Russian). MR 502722
- Yu. I. Petunin and N. G. Semeĭko, Random point processes with independent marking, Dokl. Akad. Nauk SSSR 288 (1986), no. 4, 823–827 (Russian). MR 852275
- Yu. I. Petunin and N. G. Semeĭko, A random process of segments on a two-dimensional Euclidean sphere. I, Teor. Veroyatnost. i Mat. Statist. 39 (1988), 107–113, 128 (Russian); English transl., Theory Probab. Math. Statist. 39 (1989), 129–135. MR 947940, DOI https://doi.org/10.1090/s0094-9000-07-00701-6
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148
- Daryl J. Daley, Various concepts of orderliness for point-processes, Stochastic geometry (a tribute to the memory of Rollo Davidson), Wiley, London, 1974, pp. 148–161. MR 0380976
- D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes, Springer Series in Statistics, Springer-Verlag, New York, 1988. MR 950166
- Alan F. Karr, Point processes and their statistical inference, 2nd ed., Probability: Pure and Applied, vol. 7, Marcel Dekker, Inc., New York, 1991. MR 1113698
- J. E. Moyal, The general theory of stochastic population processes, Acta Math. 108 (1962), 1–31. MR 148107, DOI https://doi.org/10.1007/BF02545761
- Yu. I. Petunin and N. G. Semeĭko, Random cap process and generalized Wicksell problem on the surface of a sphere, Serdica 17 (1991), no. 2-3, 81–91 (1992). MR 1148300
- B. D. Ripley, Locally finite random sets: foundations for point process theory, Ann. Probability 4 (1976), no. 6, 983–994. MR 474478, DOI https://doi.org/10.1214/aop/1176995941
References
- R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, New York–London, 1964. MR 0169148 (29:6401)
- A. A. Borovkov, Probability Theory, “Nauka”, Moscow, 1986; English transl., Gordon and Breach Science Publishers, Amsterdam, 1998. MR 891184 (88c:60001); MR 1711261 (2000f:60001)
- K. Matthes, J. Kerstan, and J. Mecke, Infinitely Divisible Point Processes, John Wiley & Sons, Chichester–New York–Brisbane, 1978. MR 0517931 (58:24538)
- V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, and A. F. Turbin, Handbook on the Theory of Probability and Mathematical Statistics, “Naukova Dumka", Kiev, 1978. (Russian) MR 502722 (80b:60002)
- Yu. I. Petunin and N. G. Semeĭko, Random point processes with independent marking, Dokl. Akad. Nauk SSSR 288 (1986), no. 4, 823–827; English transl. in Soviet Math. Dokl. 33 (1986), 823–827. MR 852275 (88a:60082)
- Yu. I. Petunin and N. G. Semeĭko, A random process of segments on a two-dimensional Euclidean sphere. I, Teor. Veroyatnost. Matem. Statist. 39 (1988), 107–113; English transl. in Theory Probab. Mathem. Statist. 39 (1989), 129–135. MR 947940 (89g:60170)
- H. Whitney, Geometric Integration Theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148 (19:309c)
- D. J. Daley, Various concepts of orderliness for point processes, Stochastic Geometry (E. F. Harding and D. G. Kendall, eds.), John Wiley & Sons, London, 1974, pp. 148–164. MR 0380976 (52:1873)
- D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer-Verlag, New York, 1988. MR 950166 (90e:60060)
- A. F. Karr, Point Processes and Their Statistical Inference, 2nd ed., Marcel Dekker, Inc., New York, 1991. MR 1113698 (92f:62116)
- J. E. Moyal, The general theory of stochastic population processes, Acta Math. 108 (1962), no. 1, 1–31. MR 0148107 (26:5616)
- Yu. I. Petunin and N. G. Semejko, Random cap process and generalized Wicksell problem on the surface of a sphere, SERDICA 17 (1991), 81–91. MR 1148300 (93c:60010)
- B. D. Ripley, Locally finite random sets: foundation for point process theory, Ann. Probab. 4 (1976), no. 6, 983–994. MR 0474478 (57:14117)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60G55
Retrieve articles in all journals
with MSC (2000):
60G55
Additional Information
Yu. I. Petunin
Affiliation:
Faculty for Cybernetics, Kyiv National Taras Shevchenko University, Volodymyrs’ka Street 64, 01033, Kyiv, Ukraine
Email:
vm214@dcp.kiev.ua
M. G. Semeĭko
Affiliation:
Department of Higher Mathematics, Kyiv National University for Economy, Peremogy Avenue 54/1, 03057, Kyiv, Ukraine
Email:
semejko@ukr.net
Received by editor(s):
March 16, 2005
Published electronically:
June 29, 2007
Article copyright:
© Copyright 2007
American Mathematical Society