On the iterated a posteriori distribution in Bayesian statistics
Author:
F. Recker
Journal:
Theor. Probability and Math. Statist. 74 (2007), 163-170
MSC (2000):
Primary 62F15, 62C12
DOI:
https://doi.org/10.1090/S0094-9000-07-00705-3
Published electronically:
July 5, 2007
MathSciNet review:
2336786
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: In theoretical considerations a Bayesian experiment consisting of many independently drawn samples is usually modeled by a product space. However, in some applications, as e.g. pattern recognition, the mathematical model is different. This model will be presented and a rigid measure-theoretic proof will be given showing that both models deliver the same a posteriori distribution.
References
- J. A. Hartigan, Bayes theory, Springer Series in Statistics, Springer-Verlag, New York, 1983. MR 715782
- Walther Eberl and Otto Moeschlin, Mathematische Statistik, de Gruyter Lehrbuch. [de Gruyter Textbook], Walter de Gruyter & Co., Berlin-New York, 1982 (German). MR 670752
- Lucien Le Cam, Asymptotic methods in statistical decision theory, Springer Series in Statistics, Springer-Verlag, New York, 1986. MR 856411
- Lucien Le Cam and Grace Lo Yang, Asymptotics in statistics, Springer Series in Statistics, Springer-Verlag, New York, 1990. Some basic concepts. MR 1066869
- B. L. S. Prakasa Rao, Asymptotic theory of statistical inference, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1987. MR 874342
- Tzay Y. Young and Thomas W. Calvert, Classification, estimation and pattern recognition, American Elsevier Publishing Co., Inc., New York-London-Amsterdam, 1974. MR 0350975
- O. Moeschlin, E. Grycko, C. Pohl, and F. Steinert, Experimental Stochastics, Springer, Berlin–New York, 1998.
- O. Moeschlin and F. Steinert, Bayessche Statistik, Birkhäuser, Basel, 1995.
- Jean-Pierre Florens, Michel Mouchart, and Jean-Marie Rolin, Elements of Bayesian statistics, Monographs and Textbooks in Pure and Applied Mathematics, vol. 134, Marcel Dekker, Inc., New York, 1990. MR 1051656
References
- J. A. Hartigan, Bayes Theory, Springer, New York, 1983. MR 715782 (85k:60008)
- W. Eberl and O. Moeschlin, Mathematische Statistik, de Gruyter, Berlin, 1982. MR 670752 (84e:62003)
- L. LeCam, Asymptotic Methods in Statistical Decision Theory, Springer, New York, 1986. MR 856411 (88a:62004)
- L. LeCam, Asymptotics in Statistics, Springer, New York, 1990. MR 1066869 (92k:62050)
- P. Rao, Asymptotic Theory of Statistical Inference, John Wiley, New York, 1987. MR 874342 (88b:62001)
- T. Y. Young and T. W. Calvert, Classification, Estimation, and Pattern Recognition, Elsevier Science Publishers, Amsterdam, 1974. MR 0350975 (50:3467)
- O. Moeschlin, E. Grycko, C. Pohl, and F. Steinert, Experimental Stochastics, Springer, Berlin–New York, 1998.
- O. Moeschlin and F. Steinert, Bayessche Statistik, Birkhäuser, Basel, 1995.
- J. P. Florens, M. Mouchart, and J. M. Rolin, Elements of Bayesian Statistics, Marcel Dekker, New York, 1990. MR 1051656 (91g:62004)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
62F15,
62C12
Retrieve articles in all journals
with MSC (2000):
62F15,
62C12
Additional Information
F. Recker
Affiliation:
Department of Mathematics, University of Hagen, D-58084 Hagen, Germany
Email:
Frank.Recker@FernUni-Hagen.de
Keywords:
Bayesian inference,
a posteriori distribution
Received by editor(s):
August 15, 2004
Published electronically:
July 5, 2007
Article copyright:
© Copyright 2007
American Mathematical Society