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STOCHASTIC INTEGRALS
AND STOCHASTIC DIFFERENTIAL EQUATIONS

WITH RESPECT TO THE FRACTIONAL BROWNIAN FIELD
UDC 519.21

YU. S. MISHURA AND S. A. IL’CHENKO

ABSTRACT. Stochastic differential equations on the plane are considered with respect
to the fractional Brownian field. We prove the existence and uniqueness of a solution
for such equations. These results are based on new estimates obtained for norms
in the Besov type spaces for the two-parameter stochastic integral considered with
respect to the fractional Brownian field.

1. INTRODUCTION

In this section, we consider Besov type spaces for two-parameter random fields on the
plane and study generalized Lebesgue—Stieltjes integrals with integrands and integrators
belonging to some Besov type space.

Let T' = (T1,T3) € R3 be a fixed point and let f: [0,77] := [0, T3] x [0,T5] — R be a
measurable function. We define the forward and backward fractional derivatives of the
function f of orders o; € (0,1),7=1,2:

1
(1 —a1)I(1 —ay)
« < f(t) n aq "f(t) = f(s1,ta)
(tr —a1)*(tz —az2)*  (t2 —a2)* Jo, (t1—s1)'+™
Qs 2 f(t) = f(t1, 52) d
52

(tr —a1))* Jo, (t2 —s2)tF

Asf(t)
an (6= )T (1 — 55) 17 ds> “La,1(1),

where a € [OaT]a [avt] = [alatl] X [aQ,tQ]a Asf(t) = f(t) *f(tl’SQ) 7f(81,t2) +f(5), and

D2 f(t) :=

d81

+ ajae

Qo2 O ]‘
D210 = s =T =)
f(t) oy “UF(E) — fs1,ta)
. <(51 —11)*1(bg — t2)*2 - (b2 —t2)22 Jy,  (s1— 1)l a1

Qg b2 f(t) = f(t1,s2) d
bi —t1)*r Jy, (s — i)t
A f(t)
ds|-1 t
ity (1= 81) 11 (52 — tg)tHee S) o)

+ S92
(

+ a1

assuming that all the above integrals exist.
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94 YU. S. MISHURA AND S. A. IL’CHENKO

Let g:—(s) := Agg(t), 0 < s < ¢t < T. The generalized fractional two-parameter
Lebesgue—Stieltjes integral for the functions f,g: [0,7] — R is defined by

fig= [ DR 0D g (1) di
[0,7] [0,7]

provided the right hand side is well defined as the Lebesgue integral. Properties of this
integral are studied in the paper [IJ.
Now we introduce the following classes of functions.

Definition 1. A function f: [0,7] — R belongs to the class H*1*2 with 0 < \; < 1,
i = 1,2 (in other words, f is a Holder function of orders A\; and Ay on [0,T7) if there
exists a constant C' > 0 such that

Af@) <O [T 1t —sil™,

i=1,2
|f(t) = f(s1,t2)] < Clty — 51,
|F(t) = f(t1, 82)] < Cltg — 52|
for all s <t, s,t€[0,T].

Put
o B F() = fs1,ta)] 2 f(t) = f(t,50)]
w0 =)+ [ EITS o [Tl
|Af(2)]
" /[o,t] (ty — s1)'Fer(ty — sg)tte o
£l :== sup [f(s)],
s€[0,T)
Hf”/\l,)\z = Hf”
[f(t1,82) = f($)] | |f(s1,t2) — f(5)] |Asf(1)] )
* ogzlgllt)g( (t1 — s1)™ (ta — s2)*2 (tr = s1)M(ta —s2)*2 )

Following the paper [2] we introduce the following definitions.
Definition 2. A function f: [0,7] — R belongs to the class
(1) Wi if
1l 01,0z := sup 7(f)(#) < o0;
0<t<T

(2) Wyt if

s = Sup ( [Asg(t)]
PP gcsar<r \ (T — $1)P1(t2 — s2)P2

t1 _
1 / lg¢—(u, s2) 9t—($)|du

g1

(t2 — 82)62 ) (u — 51)1"1‘51
1 /t2 lg:—(51,v) — g¢—(s)] dv
(t —s1)5 J,, (v — 59)1152

|Asg(u, 1})|
+ /[\s,t] (’LL — 31)1+ﬁ1 (’U _ 52)1+ﬁ2 d’l,L d’U
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(3) Wy if

ot |f(r)]
= su
17321 s<§<T / / < (r1 —s1)7(rg — s2)72

L[S,

(’I“g — 82)72 - (’I"l — u)71+1

L [0S,

(ri —s1)™ Js, (rg —w)r2tl

|Auwf(r)]
/ / (r1 — w) "+ (g — v)72+] dudv> dr} < o0,

Remark 1. The norm

(1) [ fllavasiine == sup e” M 072Re(f)(1), X >0,
0<t<T
is equivalent to the norm || - ||1,q,,0, on the space W%

Remark 2. It is obvious that

Ha1+51’a2+52 C Wloéhaz C ch—suaz—sz

for all 0 < g; < a; and that
HP e Bater ~ WQBlﬁz C HPr:Pe
for all g; > 0.
Remark 3. It is worth mentioning that ||g||2,5,,3, iS not a norm in a usual sense.

Remark 4. For all t <T,

‘/ fdg‘< sup (D) ()] [ [(DF21)(5)] s
[0,] [0,¢]

0<s<t

< Aaias (9)

a S C||g||2’1*01171*042Hf||37a1,0t27

where

The constant C depends on «y and s only.

The text is organized as follows. Section[P]contains the proof of estimates for the norms
in Besov type spaces for generalized two-parameter stochastic integrals with respect to
the fractional Brownian field on the plane; namely, we estimate the norm of an integral in
terms of the norm of its integrand. We apply this estimate to the case where the integrand
is a functional of the fractional Brownian field on the plane, while the integrator is the
fractional Brownian field itself. We further use these estimates for the construction of
a solution of a stochastic differential equation with respect to the fractional Brownian
field.

Section [3] is devoted to the proof of the existence and uniqueness of a solution of a
stochastic differential equation with respect to the fractional Brownian field.
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96 YU. S. MISHURA AND S. A. IL’CHENKO

2. ESTIMATES FOR GENERALIZED TWO-PARAMETER STOCHASTIC LEBESGUE AND
LEBESGUE-STIELTJES INTEGRALS

Consider the function spaces of the Besov type introduced in the preceding section.
We study the integral

Gu(f):= | fdg, teo,T.

[0,2]
The following result is proved in [3].

Theorem 1 ([3]). (1) Let g € Wy~ V' and f € W5, Then
(2) ‘AsGt(f” < Aal,az (9) ”f”g,al,az

and

|Gt( )| +/ 1 |Gt( )_Gs1,t2(f)| dsy +/0 2 |Gt(f) —Gt1782(f)| dsy

(t1 —s1)rtt (ta — s2)2t!

/“ / 1A.Gi(f)| s
(3) tl — 5 a1+1(t2 _ 52)a2+1

S Cal,otz,TAll17a2 (g)

bt —a — 2 —2a Z*QZ —z —2a2 r 2)dz
// (50 + (t = 21) 72 (252 + (2 — 22)2) 7(f)(2) d

forall0<s<t<T.
(2) Ifge W;fal’lf‘” and f € W02 then G.(f) € H=11722 gnd

(4) G111 < Cdy 0y 7 a0 (91 F 11,00 002

The constants Cy, o, 7 and C’ZMQ%T in relations @) and @) depend on aq, s, and
T only.

Consider the superposition o (s, f(s)) of a smooth function o and a function f be-
longing to some Besov type space. The following result establishes the existence of the
integral

/ o(s, £(5)) d(s).
[0,]

Theorem 2 ([3]). Let o: [0,7] x R — R. Assume that
(1) o € C3([0,T] x R);
(2) there exists C' > 0 such that |Do(t,x)| < C, where D means an arbitrary opera-
tion of the differentiation which is allowed for o according to assumption (1);
(3) lo(r,0)] < C;
(4) fe W™ and g e Wy V17 for some 0 < a; < % 5. 1=1,2.

Then the function o admits the following estimate:

lo G, F(DllLarar < Cayazr (4 IFNE + 1fll101.00)%

where Co, 0,17 %5 @ constant that depends on oy, az, and T only. The generalized
Lebesgue—Stieltjes integral

GEU) = o(s, f(s))dgs
) /M (s, £(5)) dg

is well defined on [0,T] and admits the following estimates:

(5) 1G9 (f) < Cayoa. a0 (@)1 + 1D (A

2
Hlfal,lfag — 062)
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and

HG(U)(][)Hal,az,/\lAz

(6) Ca a TAa «a (g)
< T W IAD? (1 1l annins + 112 o r20072)
1 2

In particular, G (f) € H'=*v1=%2 The constants Co, o, 1 in relations [E) and (G)
depend on ay, as, and T and do not depend on X\;, i1 =1,2, f, h, and g.

Remark 5. All the above estimates remain true if
f(s)=9g(s)=Bs, 520,
is a fractional Brownian field with Hurst indices H; € (%, 1), i =1,2.
Remark 6. Let the function ¢ be bounded and
f(z) = f(a) + Co,
where Cj is a constant. Then
1G9 (f)

Hal>a21>\17)\2

Ca NeY ,TAa NeY (g)
< )\11,22041)\11,2;2 (1 + ||f||)2 (1 + Hf||a1,a2,)\1,/\2 + Hf||i1,a2,)\1/2,)\2/2) ’
1 2

that is, the right hand side of the estimate does not depend on Cj.

Theorem 3. Let o: [0,T] x R — R. Assume that
(1) o € C30,T] x C5(R);
(2) there exists C > 0 such that
|Do(t,z)| < C,

where D means an arbitrary operation of the differentiation which is allowed for
o according to assumption (1);

(3) lo(r,0)] < C;

(4) fhe W™ and g€ Wy~ *0' 7 for some 0 < oy < 4,0 =1,2.

Then

) = GO, s

Ca NoY ,TAa NeY (g)
(7) < )\11,22%)\11222 L+ A+ MR+ 1100 + Al 6s)?
1 2

X (1 = Pllas s ns 1 = B2, prs /22 -

In particular, G\ (f), G\ (h) € H'=*v1=22 Here the constant Cay,ap,7 depends on aq,
ag, and T and does not depend on A\;, i = 1,2, f, h, and g.

Proof. We derive from formulas ([Il) and (B]) that
67 () = 67 ]

a1,a2,A1,A2

(8) < Aoy 0 (9)Ca . SUP € M7 A2’52/ / 1+t —m)” 2a1)
te[0,T]

(r2 24 (tg— 1)~ 20‘2) Y (r)dry dra,
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98 YU. S. MISHURA AND S. A. IL’CHENKO

where
Y(r)=|o(r,f(r)) — o(r,h(r))|
" |U(T7 f(?“)) - O'(U, 2, f(ua TZ)) - U(Tv h(T)) + O'(U,’I“g, h(uvr2))|
+/0 (r — )1 du
(9) "2 o (r, f(r)) — o(ri,v, f(r1,v)) —o(r, h(r)) + o(r1,v, h(r1,v
+/ o (r, f(r)) — o ( (TQ)EU)QEH (r) +a( (ru o)l

l/ t/”|AuvU7’f 1) = Auuolrh)]

(r1 —w)rtl(ry — v)e2tl

Consider

t1 to
/ / e*/\l(tlf’Fl)*/\Q(tgf’f‘z) (Tl_al + (tl _ 7’1)72011) (r2—a2 + (tz _ r2)72a2) dr
0 0
t1 pt2
= / / e~ MT1— AT (1 — 1) ™ + xfzal) ((ta — z2) ™ + x;mz) dx
0 0

1 A1ty pAota
= / / eiylny (A?aly;2al + )\llll (Altl - yl)ial)

A2
(10) X ()‘ga292_2a2 + )‘32 ()\2t2 - 92)7(12) dy
[e%e] z1
< ATt (/ ey dyy + sup / e V(2 —y1)” dy1>
0 z1>0J0
[e'e) zZ2
X (/ e Y2y, 22 dys + sup / e V(2 —y2) 2 dy2>
0 z2>0.J0
= A%O”il)‘gaz*lcalaaw
where

Coros < (1 =200) 7" +4) (1 —202) 7" +4).
We estimate the first term on the right hand side of (@) by using the Lagrange theorem:
(11) o(r, f(r)) — o(r,h(r))| < Cla(r)],
where g(-) i= £(-) - h(-).

Consider the numerator of the fourth term in ([@). The other numerators are estimated
similarly. We have

|ASU(T3 f(’f‘)) - ASO'(T, h(?”))|
= |o(r, f(r)) — o(ry, s2, f(r152)) — o(s1,72, f(s1,72))
+0(s, f(s)) —a(r,h(r)) + o(r1, s2, h(r1, 82)) + o(s1,72, h(s1,72)) — o (s, f(s))|

Now we apply the Taylor formula obtained in [4]:
1

(12) f) = fla) = f'(a)(b—a) + (b - a)z/ af(aa+ (1 - a)b)do.

0
In what follows we use the following notation:

o(u, f(u)) = o(u, h(u)) = o3(u, h(u))q(u) + (Q(u))2/0 aogy(u, ah(u) + (1 - a) f(v)) da
= 2t (u) + 22(u),

that is,

o3(u, h(u)g(u) = 2" (u)
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and

1
(q(u))2/0 ol (u, ah(u) + (1 — a) f(u)) da = 2%(u),
u=rs, (Tlv 52); (Sla T2)~

We consider the sums S! := A 21 (r) and S? := A 2%(r) separately.
Note that

(13) |Ago(r, f(r))—=Ago(r, h(r))|=|S* 4+ % =: S.
‘We have

St = Az (r)

= 2M(r) — 21 (r1, 82) — 21 (51, 72) + 21 (s)
= a3(r, h(r))q(r) — o5(r1, 82, h(r1, 52))q(r1, 82) — 05(s1,72, h(s1,72))q(51,72)
+a5(s, h(s))a(s)
= A,o5(r, h(r))q(r) + [05(s, h(s)) — 05(r1, 52, h(r1, 52))][q(r1, 52) — q(r)]

+ [o5(5,h(s)) — o5(s1, 72, h(s1,72))][a(s1,72) — q(r)] + o3(s, h(s)) Asq(r)
=hL+1L+ 13+ 1.

By the Lagrange theorem and assumption (2) of Theorem Bl we get

o] < Cayon,7[(r1 = s1)[q(r1, 52) — q(r)| + |h(r1, s2) — h(s)|lq(r1,82) — q(7)]]
< Cay o, [(11 = s1)|q(r1, 52) — ()| + |Ash(r)|lq(r1, s2) — q(r)]
+ |h(r) = h(s1,72)|lq(r1, s2) — q(r)]],

13| < Cay a1 [(r2 = s2)lq(s1,m2) — q(r)| + [Ash(r)[lq(s1,72) — q(r)]
+ |h(r) — h(r1, s2)|lq(s1,m2) — q(r)]],

|I4‘ S Oal,az,T Asq(r)|7

o5(r, h(r)) — o5(s1,72, h(s1,72))

— 04152, 111, 52)) + 745, h(9))|
(14) = |o4(r, h(r)) = (1,72, (1) + Oh(s1, 72, h(r))
— o3(s1, 72, h(s1,72)) — (95(71, 52, h(r1, 52)) — 05(5, h(r1, 52)))

— (04 (s, h(r1,52)) — (s, h(s))|

—|P,+ P, — Py Py.
Applying the Taylor formula (IZ) we obtain
P = 013(s1,72, h(r))(r1 — 1)

1
+ (r1 — 81)2/ O‘”Sé(asl + (1= a)ri,ra, h(r)) da,
0
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100 YU. S. MISHURA AND S. A. IL’CHENKO
Py = 033(s1,72, h(s1,72)) (A(r) — h(s1,72))
+ (h(r) = h(s1,72))? /01 aa$oy (1,72, ah(s1,m2) + (1 — a)h(r)) da,
Py = 0y3(s, h(r1,52))(r1 — 1)
+ (r1 — 51)? /01 aaﬁé(asl + (1= a)ry, s2, h(ry, s2)) da,
Py = o33(s, h(s))(h(r1, 52) — h(s))
+wmﬁa—M$f43%%@aM$+u—wmnﬁmdw

Now we estimate these differences separately with the help of the Lagrange theorem.
In doing so we use the derivatives of o up to the fourth order:

[Py — P3| = |(013(s1, 72, h(r)) — 015(s, h(r1, 52))) (r1 — s1)]

+ (r1 — s1)?

/ aagl)?)(asl + (1 —a)ry,ra, h(r)) da
0

1
(15) — / ozaﬁé(asl + (1 — a)ry, s2,h(r1, 82)) da
0
< Coy o, ((r1 = 51)(r2 — 82) + [h(r) = h(r1, 52)|(r1 — s1)

+ (11— s1)(r2 — 82) + |h(r) — h(r1, 52)|(r1 = 51))
< Cayan,7((r1 = 81)(r2 — 52) + |[A(r) — h(r1, s2)[(r1 — 1)),

|Py — Py| = |053(s1,72, h(s1,72)) (h(r) — h(s1,72))

+ (h(r) — h(s1, 7‘2))2/0 aaé?éé (sl,rg,ah(sl, ro) + (1 — oz)h(r)) da
— 053(5, () (h(r1,52) — h(s))

— (h(ry, s2) — h(s))2/ aaégé (5,ah(s) + (1 — a)h(ry, s2)) da
0
= |Ash(r)oss(s, h(s))
+ (055(s1,72, h(s1,72)) — 055(5, (s))) (A(r) — h(s1,72))

(16) + (h(r) = h(s1,72))? UO ac$h(s1, 72, ah(s1,m2) + (1 — a)h(r)) da

— /0 aaégé(s, ah(s) + (1 — a)h(ry, s2)) da}
+ ((h(r) = h(s1,72))? = (h(r1, 52) — h(s))?)
1
X / acrégé (s,ah(s) + (1 — a)h(r1, s2)) da
0

< Cayaar (|80 + (r2 = s2)[1(r) = hls1,72)]

+ [h(s1,72) = h(s)[[h(r) = h(s1,72)]
+ 1Al (r2 = s2)[A(r) = h(s1,72)]
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STOCHASTIC INTEGRALS WITH RESPECT TO FRACTIONAL BROWNIAN FIELD 101
+ |Bll[R(s1,72) = h(s)|[h(r) — h(s1,72)|
+[A[[|h(r) = h(s1,m2)||h(r) — h(r1, s2)]
+ [Ash(r)|[h(r) = h(s1,72)| + [Ash(r)||h(r1, 52) —h(5)|)

< Casanr (1800 + (r2 = 2)[(r) = h(s1,7)
+[(s1,72) = h(s)|[h(r) = Als1,72)
+ IAll(rs = s2)|A(r) = h(s1,72)]

+ 1Al (s1,72) = B($)|[R(r) — h(sy,72)]
+ 1Bl (r) = A(s1,r2)lIh(r) = lry, s2)] + 1B Ah(r)])
< Cay, OézaT((l + [|B]1)(r2 = s2)|h(r) = B(s1,72)| + (1 4 [|R[)*|Ash(r)]
+ (L4 IR = h(s1r2)liR(r) = Al 52)]).
Substituting (I5) and (I6) into (I4), we get
A (r, R < Cay it (11 = s1)(r2 = 52) + (1 = 1) () = (1, 52)|

+ (L [[Rl)(r2 = s2)[h(r) = h(s1,2)]
+ (L (1R ])?|Ash(r)]

+ (L4 [[AlDIA(r) = h(s1,72)| - [R(r) — h(r1782)|)'
Thus
Azt (r)] < Cahaz,T((?“l —51)(r2 = s2)lq(r)| + (r1 = s1)[h(r) = h(r1, s2)|[q(r)]

+ (LRl (r2 = s2)[h(r) = h(s1,r2)[[g(r)]
(L+ [I2ID2[Ash(r)lg(r)]
(1 )

+
(a7) + (L+[[RID[R(r) = h(s1,m2)|[R(r) — h(r1, s2)|lg(r)]
+ (r1 = s1)lq(r1, s2) — q(r)[ 4 [Ash(r)llg(r1, s2) — q(r)]
+ [h(r) = h(s1,72)la(r1, s2) — q(r)]
+ (r2 = s2)lq(s1,72) — q(r)| + [Ash(r)[lq(s1,72) — q(r)|
+ [h(r) — h(ry, s2)llq(s1,72) — q(r)| + |ASQ(7”)|)~
Then
S% = A 23 (r)
= 2%(r) — 2%(r1, 52) — 22(s1,72) + 2°%(5)
= @(r))* [ acly(rah(r) + (1= a)f(r)) do
(18) — (q(r1, 82))2/ aoly(r1, s2,ah(ry, s2) + (1 — @) f(r1, 52)) dov
0

1
_ (qls1,72))? / a0ty (31,72, ah(s1,72) + (1 — @) f(s1,72)) dov

T (g(s)? / aclly (s, ah(s) + (1 — ) f(s)) da
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102 YU. S. MISHURA AND S. A. IL’CHENKO

1

= | al@myoss(rant) + 1= ) f)
— (q(r1,82))%04s (rl, s9,ah(ry, s2) + (1 — ) f(ry, 52))
- (0(817T2))2U:,3/3 (5177“2,0éh(517T2) +(1 - Ol)f(ShTz))

+ (a(5)) (s, ah(s) + (1 = @) f(s)) | dav

One can apply estimate (7)) to the expression written in the square brackets in (IJ)
where ¢%(-) and (ah(+) + (1 — a)f(+))) are substituted for ¢(-) and h(-), respectively.
Using the existence of the derivatives of o up to the fifth order we obtain

A2 (r)] < Cal,az,T((Tl — 51)(r2 = 52)|@° ()| + (r1 = s1)|h(r) = h(r1, s2)[|¢*(r)]

+ (= s)If(r) = £(r1, 52)[16% ()]

+ (LA (Rl + [1£ID(r2 = s2) A(r) = h(s1,72) lg* (r)]

+ (LA Rl + 1£ID(r2 = s2)I f(r) = f(s1,72)llg* (7))

+ (LA (Rl + LFID[Ash(r) g ()]

+ (L IR+ 1£ID*1A £ (r)llg* ()]

+ L+ A+ 1 IDIR(r) = h(sy,r2)l[A(r) — h(r1, 52)[l6% ()]

+ @+ R+ 1 IDIR() = By, )l f(r) = fry, s2)lla®(r)]
19) + @+ R+ D) = fsir)llh(r) = h(ry, s2)]l6?(r))]

+ (LA R+ IFIDIF ) = fs1r2)lIf(r) = fry, s2)llg? (7))

+ (1 = s1)lg*(r1, 52) = (1) + |Ah(r)[|¢* (r1. 52) — ¢*(r)]

+ 1A f(r)lg?(r1,52) — ()]
+ |h(r) = h(s1,m2)|lg (1, 52) — ¢*(r))|
+f(r) = fls1,m2)lla® (r1, 52) — ¢ (7))
+ (ra = 82)|*(s1,72) — ()| + |Ah(r)[|¢*(s1,72) — ¢*(r)|
+ A f()la*(s1,72) — ¢2(r)]|

+ |h(r) = h(r1, s2)lg* (s1,72) — ¢*(r)

+1f(r) = flre, s2)lla® (s1,72) — ¢*(r )|+|Asq2(7")|)-

The last term in ([I9) is estimated as follows:

1A ()| = | (r) — (1, 52) — *(s1.7m2) + ¢°(s)]
= [(q(r) — q(r1,52))(q(r) + q(r1, s2)) — (a(s1,72) — a(s))(q(s1,72) + 4(s))]
< |Asq(r)la(r) — q(ry, s2)]
+lq(s1,m2) +q(s)lla(r) + q(r1, s2) — q(s1,72) — q(s)|
< 2(|lgll[Asq(r)| + lg(r) — q(r1, s2)llq(r) — q(s1,72)]),

|4*(s1,7m2) — ()] < 2]lgllla(s1,72) — a(r)-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STOCHASTIC INTEGRALS WITH RESPECT TO FRACTIONAL BROWNIAN FIELD 103

Substitute (I7) and ([I9) into (I3):

$ < Capr (14 ) (1 = 51)(r2 = 52)la(r)]
+ (1 + [lgl))(r1 = s1)[h(r) — h(r1, s2)| - [q(r)]
+ llgll(ri = s)[f(r) — f(r1,s2)] - |a(r)]
+ (X + g+ (IRl + £ (r2 = s2)|h(r) = h(s1,72)] - [q(r)]
+ gl (X + IRl + 1) (r2 = s2)| f(r) = f(s1,72)] - [a(r)]
+ (L4 gD+ 12l + [FID?Ash(r)] - a(r)]
+ gl (L + Il + 11D Asf ()] - a(r)]
+ (L (gl @+ [1al +[1£1)
X [h(r) = h(s1,r2)| - [R(r) = h(r1, s2)] - q(r)]
+ gl {12 + [ £ IDIR(r) = h(s1,m2)] - [ f(r)
+ g+ 1+ 1D ) = f(s1,72)] - [B(r) = h(ry, s2)] - g(r)]
(20) + gl @+ {RI +1LFIDLF(r) = f(s1,7m2)] - [£(r)
+ (1 +[lal)(r1 = s1)lg(r1, 52) — q(r)]
+ (L + llal)[Ash(r)] - lg(r1, s2) — q(r)]
+ lall|Asf(r)| - [g(r1, s2) —q(r)]
+ (L + llgl)|(r) = h(s1,72)| - la(r1, s2) — q(r)]
+ lall[f(r) = f(s1,m2)] - lg(r1, s2) — q(r)]
+ (L + llgll)(r2 = s2)la(s1,72) — q(r)]
+ (L +[lgl)[Ash(r)] - la(s1,72) — q(r)]
+ lall[As f(r)] - la(s1,72) — q(r)]
+ (L +[lg)[h(r) = h(r1, s2)] - la(s1,72) — q(r)]
+lqlllf(r) = f(ri,s2)| - la(s1,7m2) — q(r)]

+ A+ llaDIAsa(r)[ + la(r) = a1, s2)| - la(r) — als1, m)\).

Using estimates (I0), (II)), and (20) in inequality (8) we establish bound (7). This
completes the proof. O

Now we obtain analogous bounds for the usual Lebesgue integral. The proof is similar
to the above one; however, it is much simpler and we omit it. Let

F(f)= [ f(s)ds and FO(f) = / (s, £(s)) ds

[0,] [0,¢]
where s = (s1, s2) and t = (¢1,¢2), s,t € [0,T].

Theorem 4. Let 0 < oy < = 5.0 =1,2, and let f: [0,T] — R be a measurable function.
Assume that

t
| f(s)]
su dsy1dso < 00
tdo?ﬂ/o (b1 — 1)1 (83 — sg)oz 1072
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(this inequality holds, in particular, if || f|| < oo). Then F.(f) € W{"** and
" F — I t2 F — F S2
LT e L e
0 0

(t1 — sp)t! (ta — sp)o2 1

|ASFE(f)]
21 + ds
( ) /[O,t] (tl _ 81)a1+1 (t2 _ 82)a2+1
£ (s)]
< Oal (e 7} / dS
> yaz, T 0.4 (tl _ 81)0‘1 (t2 _ 82)0‘2

forall0<t<T.
If f € W2 then F.(f) € C'[0,T) and thus

t1 to
(22) Arn=| [ g < s = sl
and
(23) IF() apsa = H /[ S <l ol
N 1,01,

where Cy, o, 7 and C’ 1,0, 7€ SOME constants that depend on oy, ag, and T only.
Theorem 5. Assume that |b(t,z)| < Co(1 + |x|) for all z € R and t € [0,T]. If
Fewyre2, then FV(f) = [ b(s, f(s))ds € CY([0,T]) and

Ca ,Q,
(24) HF(b)(f Hal,ag A1, < W (1 + ||fHa1g042,)\17)\2)

for all \; > 1,9 = 1,2, where Cq, o, 7 5 a positive constant that depends on o1, ag,
and T only.

Remark 7. If b(t, z) is bounded, then the result discussed in Remark [@ holds.
Theorem 6. If f,h € W'** are such that ||f|| < N and ||h|| < N, then

Oa yao, TN
(25) IED) = FOM) oy 00000 < 3ioar ez 1 = Hllaras ang
1 2

for all \; > 1, where Co, o,,1,N 15 S0me constant that depends on oy, az, T, and N only.

3. THE EXISTENCE AND UNIQUENESS OF A SOLUTION OF A STOCHASTIC
DIFFERENTIAL EQUATION WITH RESPECT TO A FRACTIONAL BROWNIAN FIELD

The notion of a fractional Brownian field on the plane can be introduced in several
ways. We consider the following definition of a fractional Brownian field that preserves
the Brownian motion properties coordinatewise.

Definition 3. Let H; € (0,1), i = 1,2. A random Gaussian field such that
(1) BgII;HQ =0, EBtHl’HZ = 0;
(2) EBHuH: gHut> IL- 12( Hi g g2He |y — s;[*17), where s = (s1,s2) and

t= (tl, tz);
(3) the trajectories of the field BH#1:H2 are continuous with probability 1

is called a fractional Brownian field {B/""2 t ¢ R2 <} with Hurst indices H; and Hs.

In what follows we denote the Hurst index by H = (H;, H2) and consider the case of
H; € (%, 1), i = 1,2. Note that a fractional Brownian field with H; = Hy = % is the
Chentsov—Wiener field.
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Remark 8. According to a result of the paper [5], B € HH1—51:H2=22 almost surely with
respect to the measure P for all 0 < &; < H;, i = 1,2, where BY is a fractional Brownian
field. Thus B € Wy #'"P2 for all 1 — 3; < Hy, i = 1,2, and Ay_p,1_p,(BY) < o0
almost surely with respect to the measure P.

Remark 9. The bounds obtained in Theorems [l and 2l remain true in the case of
f(s)=g(s) =B,  s5>0,
and a fractional Brownian field has the Hurst indices H; € (%, 1), 1=1,2.

Let (2, F,P) be a complete probability space where a fractional Brownian field
BF:[0,T]xQ—R

is defined.
Consider a stochastic differential equation of the form

(26) X, :X0+/

b(s, X,) ds + / o(s, X,)dB? = X0+ F (X) + G (x),
(0.1

(0,¢]
where ¢ € [0,T] C R?, a point 7T is fixed, Bf is a fractional Brownian field with Hurst
indices H; € (%, 1), i=1,2,and 0,b: [0,T] x R — R are measurable functions such that
1) b(s,x) is continuous with respect to s and for all N > 0 there exists
Cn > 0 such that [b(t,z) — b(t,y)| < Cnlx —y| for all |z|,|y] < N
and all ¢t € [0,T7];
2) there exists C' > 0 such that |b(t,z)| < C and |o(t,z)| < C for all
t€[0,7] and = € R;
3) o € C?[0,T] x C°(R);
4) there exists C' > 0 such that |Do(t, z)| < C, where D denotes any

operation of differentiation which is allowed according to condition 3).

The random field

(27)

Xt :Xt(W)Z [O,T] xQ—R
is called a solution of equation (26]) if it turns equality (26]) into an identity for almost all

w €  and if the integral GEU) (X), treated in the sense of the generalized two-parameter
Lebesgue—Stieltjes integral, is well defined for almost all w € €.
The proof of the main result of this section uses Lemma 7.2 of [2].

Lemma 1 ([2]). Let (X, p) be a complete metric space and pg, p1, and pa be some metrics
on X that are equivalent to p. Assume that the transformation £: X — X is such that

(1) there exist ro > 0 and xg € X for which
E(Bo) C BQ,

where By = {x € X : po(xo,x) < 1o};

(2) there exist a lower semi-continuous function ¢: (X, p) — [0, +o0] and a constant
Coy > 0 such that
(a) p(z) < Cy for all z € £(By),

(b) pr(L(x), £(y)) < ((x) + @(y))pr(x,y) for all x,y € L(Bo);
(3) there exists a € (0,1) such that

pa(£(2), £()) < aps(ay) for all a2,y € £(By).
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Then there exists x* € £(Bg) C X such that
¥t = L(x").
Theorem 7. Let all assumptions 1)—4) in [Z1) hold for the coefficients of equation (26]).
Then equation (26) possesses a unique in the class W{™** solution X; on the rectangle
[0,T]. Moreover
X c Hl—ozl,l—ozg
for almost all w € Q and all 1 — H; < a; < %, 1=1,2.
Proof. Fix some w € ). In what follows we omit the argument w. Assume that
X e Wy
is a solution of equation (26) for a given w and for some «; € (1 — H;, 3). By Theorems[
and B G@)(X) € H'7@v1=22 and F®)(X) € O, whence
X e Himolzaz,
First we prove the uniqueness of a solution. Let N > 0 be a number such that

IXNara: €N: - 1 Xl1asas < N

Then || X|| V | X| < N, where || X|| = Supyepo, 7] | X¢| and
XT3, o2 /2002 < COAINIDIX lay,az.0.50-

Write
X, = Xo+ FP(X)+G(X), X, =X+ F(X)+G7(X).
If conditions 1), 3), and 4) of (Z7) hold for A; > 1, i = 1,2, then there exists a constant
CN,H,a1,00,7 Such that

Ix = X]

a1,a2,A1,A2

S HF(b) (X) - F(b) (X)Hal,az,kl,)\g + HG(U) (X) - G(U) (X)Hal,ag,)\17A2
CN,H,a1,00,T =
S )\%—201 ;5—220(2 (HX - XHal,DQ,)\l,)\Q)
by Theorems [ and [6
Choose A; so large that
CN, H,a1,00,T < 1

1720&1 172(12
AT 2

Then we get 1||X — )Z'HQMQ%M,)Q < 0, whence X; = X, (we identify functions that
are equal almost everywhere with respect to Lebesgue measure).

Now we prove the existence of a solution. Recall that w € Q is fixed. We rewrite
equation (26]) as follows:

(28) )?t:/ E(s,)?s)ds+/ 5(s, X.)dBH
[0,¢] [0,]

where X, := X, — X, b(s,z) = b(s, = + Xo), and &(s,z) = o (s, z + Xo).
We apply the fixed point theorem in the space W;***? but for another norm. Consider

the operator
. Qp,002 l—ay,l—as Q1,002
AW, —H cw;

such that _ _
y(t) = (Az)(t) = " (2) + G\ (x),  telo,T],

F) = FP @+ Xo), G7@) =G @+ Xo).
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Note that
‘|X||i1,a2,)\1/2,)\2/2 < HXHOéhCYQ,)\l,)\z : HX||1,a1,a2~
By statement (2) of Theorem 2] Theorem [l and Remarks [6] and [7]

(b alG
P N S €Ol NPV o [ COl Y
< Co COAOtl,OQ (BH>
= )\i—al )\%—052 )\%—Qal A;—Zaz |1,a17a2)
X (1 + ||xHa170¢27)\1>>\2)’
since conditions 1)-4) of [27)) hold where Cy is a constant. We recall that oy, ag, and T'

are fixed.
Note that ||z|| < ||z

L+ [l2)* (1 + [l

|1>0417C¥2 < e/\lT1+)\2T2||‘r||a1,a27/\1,>\2' Thus

Dy

Ny >\1T1+/\2T2)4
2 — y1—2a7 y1—2as
AT

||Ax||0417a2g)\1, (1 + ||x||0417a2,/\1,)\26

for A; > 1. Let [|Zlay,a2,01,0, < 1, where A\; = Ay = A is such that
Dy
)\2—2041—2012
and TP = Ty :=1/(2)), i = 1,2. Then ||Az|la; ar.ax < 1, that is,
A(B()> C Bo,
where By = {z € W' ||2]|ay,a0 a0 < 1}
Considering the operator A on the set By and for the metric pg generated by the norm

I |y .o 2.0, We see that assumption (1) of Lemma [I] holds.
Theorems [3] and @] imply that

||A{E - Ay||a1,a2,)\1,/\2

(1+2)*<1

(1 + ||{E |1,Oé1,042 + ||y||1,041,042)5||x - y”aham/\l,)\z

C
< - -
(29) — )\%72041)\%72042

+ H"I" - yHa1,az,)\17/\2

l—ai1y1—a2
)‘1 )‘2

for all z,y € By D A(Bp) and for all \; > 1.

Note that ¢(z) := (1 + [|Z]|1,a1,a,)° is a continuous function on the space W;'** and
moreover there exists Cyp > 0 such that p(z) < Cy for all © € A(By). The bound ([29)
implies that

p1(Az, Ay) < C(p(x) + ¢(y))p1(z,y) for all z,y € A(By),

where p; is the metric generated by the norm |- |la;,as,1,1- Thus assumption (2) of
Lemma [l holds.
If Ay and \; are such that
c 5 C 1
)\%—2&1 )\%—2012 (1 + 26) + )\(1)—04 )\é—az = 5’

then [[Az — AYllay,a0.0000 < 312 = Yllas,as,r0.00- For Ag > A, we choose TO = 1/(2o).
Then assumption (3) of Lemma [] holds. This implies that the operator A has a fixed
point in the square [0,7°]?. Thus a solution exists in this square.

Now we consider equation (26) in the square [1°,27°] x [0,7°]. We rewrite the
equation in the following form:

(30) X, = / Z(s, )?s) ds + / 5(5,5(8) dBH,
[T,2T]%[0,T] [T,2T]%[0,T]
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where )Zt = Xt — XTo’tQ — th)o + XTO,O = Xt — )(To’t27 E(S,I) = b(87.'L' — XTO,t2)7 and
a(s,x) =o0(s,0 — Xpoy,).

One can apply the same reasoning to equation ([B0) as in the case of equation (28].
As a result we prove the existence of a solution on [T, 27°] x [0,7°]. Continuing the
reasoning in this way we prove the existence of a solution on the whole interval [0,7]. O

Remark 10. The existence and uniqueness of a solution of a stochastic differential equa-
tion with respect to a fractional Brownian field is proved in [2] in the one-parameter
case.
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