The invariance principle for the Ornstein–Uhlenbeck process with fast Poisson time: An estimate for the rate of convergence
Authors:
B. V. Bondarev and A. V. Baev
Translated by:
S. Kvasko
Journal:
Theor. Probability and Math. Statist. 76 (2008), 15-22
MSC (2000):
Primary 60E15, 60H10; Secondary 60F17
DOI:
https://doi.org/10.1090/S0094-9000-08-00727-8
Published electronically:
July 10, 2008
MathSciNet review:
2368735
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We consider the invariance principle for \[ \varsigma _n (t) = n^{ - 1/2} \int _0^{Z(nt)} \xi (s) ds, \] where $\xi (s)$ is the Ornstein–Uhlenbeck process and $Z(t)$, $t \geq 0$, is the Poisson process such that ${\mathsf E} Z(t) = \lambda (t)$. We prove that \[ {\mathsf P}\left \{\sup _{0 \leq t \leq T} \left | {\varsigma _n (t) -\frac \sigma \gamma n^{ - 1/2} W(\lambda (nt))} \right | >r_n \right \} \leq \alpha _n, \] where $r_n\to 0$ and $\alpha _n \to 0$ as $n \to +\infty$.
References
- D. O. Chikin, A functional limit theorem for stationary processes: a martingale approach, Teor. Veroyatnost. i Primenen. 34 (1989), no. 4, 731–741 (Russian); English transl., Theory Probab. Appl. 34 (1989), no. 4, 668–678 (1990). MR 1036712, DOI https://doi.org/10.1137/1134083
- S. V. Anulova, A. Yu. Veretennikov, N. V. Krylov, R. Sh. Liptser, and A. N. Shiryaev, Stochastic calculus, Current problems in mathematics. Fundamental directions, Vol. 45 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 5–253 (Russian). MR 1039617
- Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 1987. MR 959133
- I. I. Gikhman and A. V. Skorokhod, Stokhasticheskie differentsial′nye uravneniya i ikh prilozheniya, “Naukova Dumka”, Kiev, 1982 (Russian). MR 678374
- Yu. V. Prokhorov (ed.), Veroyatnost′i matematicheskaya statistika. Èntsiklopediya, Nauchnoe Izdatel′stvo “Bol′shaya Rossiĭskaya Èntsiklopediya”, Moscow, 1999 (Russian). MR 1785437
- B. D. Gnedenko, On an extension of the concept of a martingale, Teor. Veroyatn. Primen. 50 (2005), no. 4, 763–767 (Russian, with Russian summary); English transl., Theory Probab. Appl. 50 (2006), no. 4, 659–662. MR 2331987, DOI https://doi.org/10.1137/S0040585X97982037
References
- D. O. Chikin, A functional limit theorem for stationary processes: A martingale approach, Teor. Veroyatnost. i Primenen. 34 (1989), no. 4, 731–741; English transl. in Theory Probab. Appl. 34 (1989), no. 4, 668–678. MR 1036712 (91e:60106)
- S. V. Anulova, A. Yu. Veretennikov, N. V. Krylov, R. Sh. Liptser, and A. N. Shiryaev, Stochastic Calculus, Itogi nauki i tekhniki [Progress in Science and Technology], Current problems in mathematics, Fundamental directions, vol. 45, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, pp. 5–260. (Russian) MR 1039617 (91i:60002b)
- J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987. MR 959133 (89k:60044)
- I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and their Applications, “Naukova dumka”, Kiev, 1982. (Russian) MR 678374 (84j:60003)
- Yu. V. Prokhorov (ed.), Probability and Mathematical Statistics, “Bol’shaya Rossiĭskaya Entsiklopediya”, Moscow, 2003. (Russian) MR 1785437 (2001j:62001)
- B. Gnedenko, On an extension of the concept of a martingale, Teor. Veroyatnost. i Primenen. 50 (2005), no. 4, 763–767; English transl. in Theory Probab. Appl. 50 (2006), no. 4, 659–662. MR 2331987 (2008g:60127)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60E15,
60H10,
60F17
Retrieve articles in all journals
with MSC (2000):
60E15,
60H10,
60F17
Additional Information
B. V. Bondarev
Affiliation:
Department of Probability Theory and Mathematical Statistics, Faculty for Mathematics, Donetsk National University, Universiets’ka Street, 24, 83055 Donetsk, Ukraine
Email:
bvbondarev@cable.netlux.org
A. V. Baev
Affiliation:
Department of Probability Theory and Mathematical Statistics, Faculty for Mathematics, Donetsk National University, Universiets’ka Street, 24, 83055 Donetsk, Ukraine
Email:
tv@matfak.dongu.donetsk.ua
Keywords:
Ornstein–Uhlenbeck process,
distribution of the supremum,
Poisson process
Received by editor(s):
January 6, 2006
Published electronically:
July 10, 2008
Article copyright:
© Copyright 2008
American Mathematical Society