Random motions in inhomogeneous media
Authors:
E. Orsingher and N. E. Ratanov
Translated by:
The authors
Journal:
Theor. Probability and Math. Statist. 76 (2008), 141-153
MSC (2000):
Primary 60K99; Secondary 62G30, 35L25, 60C05
DOI:
https://doi.org/10.1090/S0094-9000-08-00738-2
Published electronically:
July 16, 2008
MathSciNet review:
2368746
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract:
Space inhomogeneous random motions of particles on the line and in the plane are considered in the paper. The changes of the movement direction are driven by a Poisson process. The particles are assumed to move according to a finite velocity field that depends on a spatial argument.
The explicit distribution of particles is obtained in the paper for the case of dimension 1 in terms of characteristics of the governing equations. In the case of dimension 2, the distribution is obtained if a rectifying diffeomorphism exists.
References
- V. I. Arnol′d, Ordinary differential equations, MIT Press, Cambridge, Mass.-London, 1978. Translated from the Russian and edited by Richard A. Silverman. MR 0508209
- D. G. Aronson, N. V. Mantzaris, and H. G. Othmer, Wave propagation and blocking in inhomogeneous media, Discrete Contin. Dyn. Syst. 13 (2005), no. 4, 843–876. MR 2166708, DOI https://doi.org/10.3934/dcds.2005.13.843
- S. Goldstein, On diffusion by discontinuous movements, and on the telegraph equation, Quart. J. Mech. Appl. Math. 4 (1951), 129–156. MR 47963, DOI https://doi.org/10.1093/qjmam/4.2.129
- K. P. Hadeler, Reaction transport systems in biological modelling, Mathematics inspired by biology (Martina Franca, 1997) Lecture Notes in Math., vol. 1714, Springer, Berlin, 1999, pp. 95–150. MR 1737306, DOI https://doi.org/10.1007/BFb0092376
- D. D. Joseph and Luigi Preziosi, Addendum to the paper: “Heat waves” [Rev. Modern Phys. 61 (1989), no. 1, 41–73; MR0977943 (89k:80001)], Rev. Modern Phys. 62 (1990), no. 2, 375–391. MR 1056235, DOI https://doi.org/10.1103/RevModPhys.62.375
- Mark Kac, Probability and related topics in physical sciences, Lectures in Applied Mathematics (Proceedings of the Summer Seminar, Boulder, Colorado, vol. 1957, Interscience Publishers, London-New York, 1959. With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. MR 0102849
- Mark Kac, A stochastic model related to the telegrapher’s equation, Rocky Mountain J. Math. 4 (1974), 497–509. Reprinting of an article published in 1956. MR 510166, DOI https://doi.org/10.1216/RMJ-1974-4-3-497
- A. D. Kolesnik and È. Orsinger, Analysis of a two-dimensional random walk with finite velocity and reflection, Teor. Veroyatnost. i Primenen. 46 (2001), no. 1, 138–147 (Russian, with Russian summary); English transl., Theory Probab. Appl. 46 (2002), no. 1, 132–140. MR 1968710, DOI https://doi.org/10.1137/S0040585X97978774
- H. G. Othmer, S. R. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol. 26 (1988), no. 3, 263–298. MR 949094, DOI https://doi.org/10.1007/BF00277392
- Thomas Hillen and Hans G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math. 61 (2000), no. 3, 751–775. MR 1788017, DOI https://doi.org/10.1137/S0036139999358167
- Hans G. Othmer and Thomas Hillen, The diffusion limit of transport equations. II. Chemotaxis equations, SIAM J. Appl. Math. 62 (2002), no. 4, 1222–1250. MR 1898520, DOI https://doi.org/10.1137/S0036139900382772
- Enzo Orsingher, Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff’s laws, Stochastic Process. Appl. 34 (1990), no. 1, 49–66. MR 1039562, DOI https://doi.org/10.1016/0304-4149%2890%2990056-X
- E. Orsingher, Exact joint distribution in a model of planar random motion, Stochastics Stochastics Rep. 69 (2000), no. 1-2, 1–10. MR 1751715, DOI https://doi.org/10.1080/17442500008834229
- E. Orsingher and N. Ratanov, Planar random motions with drift, J. Appl. Math. Stochastic Anal. 15 (2002), no. 3, 205–221. MR 1930947, DOI https://doi.org/10.1155/S1048953302000175
- Enzo Orsingher, Bessel functions of third order and the distribution of cyclic planar motions with three directions, Stoch. Stoch. Rep. 74 (2002), no. 3-4, 617–631. MR 1943582, DOI https://doi.org/10.1080/1045112021000060755
- H. G. Othmer, On the significance of finite propagation speeds in multicomponent reacting systems, J. Chem. Phys. 64 (1976), no. 2, 460–470. MR 449372, DOI https://doi.org/10.1063/1.432261
- Mark A. Pinsky, Lectures on random evolution, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1143780
- N. E. Ratanov, Random walks of a particle in an inhomogeneous one-dimensional environment with reflection and absorption, Teoret. Mat. Fiz. 112 (1997), no. 1, 81–91 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 112 (1997), no. 1, 857–865 (1998). MR 1478901, DOI https://doi.org/10.1007/BF02634100
- N. Ratanov, Reaction-advection random motions in inhomogeneous media, Phys. D 189 (2004), no. 1-2, 130–140. MR 2044720, DOI https://doi.org/10.1016/j.physd.2003.09.032
- Nikita Ratanov, Branching random motions, nonlinear hyperbolic systems and travelling waves, ESAIM Probab. Stat. 10 (2006), 236–257. MR 2219342, DOI https://doi.org/10.1051/ps%3A2006009
- Daniel W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 303–315. MR 386038, DOI https://doi.org/10.1007/BF00532948
- George H. Weiss, Some applications of persistent random walks and the telegrapher’s equation, Phys. A 311 (2002), no. 3-4, 381–410. MR 1943373, DOI https://doi.org/10.1016/S0378-4371%2802%2900805-1
References
- V. I. Arnol’d, Ordinary Differential Equations, “Nauka”, Moscow, 1971; English transl., MIT Press, Cambridge, MA-London, 1978. MR 0508209 (58:22707)
- D. G. Aronson, N. V. Mantzaris, and H. G. Othmer, Wave propagation and blocking in inhomogeneous media, Discrete and Continuous Dynamical Systems 13 (2005), 843–876. MR 2166708 (2006k:35287)
- S. Goldstein, On diffusion by discontinuous movements and the telegraph equation, Quart. J. Mech. Appl. Math. 4 (1951), 129–156. MR 0047963 (13:960b)
- K. P. Hadeler, Reaction transport systems in biological modelling, Mathematics Inspired by Biology, 95-150, CIME Lectures 1997, Florence (V. Capasso and O. Diekmann, eds.), Lecture Notes in Mathematics 1714, Springer-Verlag, 1999. MR 1737306
- D. D. Joseph and L. Preziosi, Addendum to the paper: “Heat waves” [Rev. Mod. Phys. 61 (1989), no. 1, 41–73]; Rev. Mod. Phys. 62 (1990), no. 2, 375–391. MR 1056235 (91e:80003)
- M. Kac, Probability and Related Topics in Physical Sciences, Interscience, London, 1959. MR 0102849 (21:1635)
- M. Kac, A stochastic model related to the telegrapher’s equation, Rocky Mountain J. Math. 4 (1974), 497–509. MR 0510166 (58:23185)
- A. Kolesnik and E. Orsingher, Analysis of a finite-velocity planar random motion with reflection, Theory of Probability and its Applications 46 (2001), no. 1, 138–147. MR 1968710 (2004g:60109)
- H. G. Othmer, S. R. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol. 26 (1988), 263–298. MR 949094 (90a:92064)
- T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math. 61 (2000), no. 3, 751–775. MR 1788017 (2001m:35302)
- H. G. Othmer and T. Hillen, The diffusion limit of transport equations. II. Chemotaxis equations, SIAM J. Appl. Math. 62 (2002), no. 4, 1222–1250. MR 1898520 (2003c:35154)
- E. Orsingher, Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff’s law, Stoch. Processes Appl. 34 (1990), 49–66. MR 1039562 (91g:60086)
- E. Orsingher, Exact joint distribution in a model of planar random motion, Stochastics and Stochastics Reports 69 (2000), no. 1–2, 1–10. MR 1751715 (2000m:60117)
- E. Orsingher and N. Ratanov, Planar random motions with drift, J. Appl. Math. Stoch. Anal. 15 (2002), no. 3, 205–221. MR 1930947 (2003i:60113)
- E. Orsingher, Bessel functions of third order and the distribution of cyclic planar motions with three directions, Stochastics and Stochastics Reports 74 (2002), no. 3–4, 617–631. MR 1943582 (2003j:60144)
- H. G. Othmer, On significance of finite propagation speeds in multicomponent reacting systems, J. Chem. Phys. 64 (1976), 460–470. MR 0449372 (56:7676)
- M. A. Pinsky, Lectures on Random Evolution, World Scientific, Singapore–New Jersey–London–Hong Kong, 1992. MR 1143780 (93b:60160)
- N. E. Ratanov, Random walks of a particle in a one-dimensional inhomogeneous environment with reflection and absorption, Teor. Matem. Fiz. 112 (1997), no. 1, 81–91. (Russian) MR 1478901 (98k:82079)
- N. Ratanov, Reaction–advection random motions in inhomogeneous media, Physica D 189 (2004), 130–140. MR 2044720 (2004m:35167)
- N. Ratanov, Branching random motions, nonlinear hyperbolic systems and travelling waves, European Series in Applied and Industrial Mathematics (ESAIM:PS) 10 (2006), 236–257. MR 2219342 (2007g:60101)
- D. W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 303–315. MR 0386038 (52:6897)
- G. H. Weiss, Some applications of persistent random walks and the telegrapher’s equation, Physica A 311 (2002), 381–410. MR 1943373 (2004h:82096)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60K99,
62G30,
35L25,
60C05
Retrieve articles in all journals
with MSC (2000):
60K99,
62G30,
35L25,
60C05
Additional Information
E. Orsingher
Affiliation:
Dipartimento di Statistica, Probabilitá e Statistiche Applicate, Universitá degli Studi di Roma “La Sapienza”, 00185 Rome, Italy
Email:
enzo.orsingher@uniroma1.it
N. E. Ratanov
Affiliation:
Universidad del Rosario, Bogotá, Colombia
Email:
nratanov@urosario.edu.co
Keywords:
Bessel functions,
Poisson process,
rectifying diffeomorphism,
hyperbolic equations,
telegraph process
Received by editor(s):
May 16, 2006
Published electronically:
July 16, 2008
Article copyright:
© Copyright 2008
American Mathematical Society