On some properties of asymptotic quasi-inverse functions
Authors:
V. V. Buldygin, O. I. Klesov and J. G. Steinebach
Translated by:
The authors
Journal:
Theor. Probability and Math. Statist. 77 (2008), 15-30
MSC (2000):
Primary 26A12; Secondary 26A48
DOI:
https://doi.org/10.1090/S0094-9000-09-00744-3
Published electronically:
January 14, 2009
MathSciNet review:
2432769
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: A characterization of normalizing functions connected with the limiting behavior of ratios of asymptotic quasi-inverse functions is discussed. For nondecreasing functions, conditions are obtained that are necessary and sufficient for their asymptotic quasi-inverse functions to belong to the class of (so-called) $O$-regularly varying functions or to some of its subclasses.
References
- S. Aljančić and D. Aranđelović, $0$-regularly varying functions, Publ. Inst. Math. (Beograd) (N.S.) 22(36) (1977), 5–22. MR 466438
- V. G. Avakumović, Über einen O-Inversionssatz, Bull. Int. Acad. Youg. Sci. 29–30 (1936), 107–117.
- N. K. Bari and S. B. Stečkin, Best approximations and differential properties of two conjugate functions, Trudy Moskov. Mat. Obšč. 5 (1956), 483–522 (Russian). MR 0080797
- Simeon M. Berman, Sojourns and extremes of a diffusion process on a fixed interval, Adv. in Appl. Probab. 14 (1982), no. 4, 811–832. MR 677558, DOI https://doi.org/10.2307/1427025
- Simeon M. Berman, The tail of the convolution of densities and its application to a model of HIV-latency time, Ann. Appl. Probab. 2 (1992), no. 2, 481–502. MR 1161063
- N. H. Bingham and Charles M. Goldie, Extensions of regular variation. I. Uniformity and quantifiers, Proc. London Math. Soc. (3) 44 (1982), no. 3, 473–496. MR 656246, DOI https://doi.org/10.1112/plms/s3-44.3.473
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR 898871
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukraïn. Mat. Zh. 54 (2002), no. 2, 149–169 (English, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 54 (2002), no. 2, 179–206. MR 1952816, DOI https://doi.org/10.1023/A%3A1020178327423
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On factorization representations for Avakumović-Karamata functions with nondegenerate groups of regular points, Anal. Math. 30 (2004), no. 3, 161–192 (English, with English and Russian summaries). MR 2093756, DOI https://doi.org/10.1023/B%3AANAM.0000043309.79359.cc
- V. V. Buldigīn, O. Ī. Klesov, and Ĭ. G. Shtaĭnebakh, On some properties of asymptotically quasi-inverse functions and their application. I, Teor. Ĭmovīr. Mat. Stat. 70 (2004), 9–25 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 70 (2005), 11–28. MR 2109819, DOI https://doi.org/10.1090/S0094-9000-05-00627-7
- V. V. Buldigīn, O. Ī. Klesov, and Ĭ. G. Shtaĭnebakh, On some properties of asymptotically quasi-inverse functions and their application. II, Teor. Ĭmovīr. Mat. Stat. 71 (2004), 34–48 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 71 (2005), 37–52. MR 2144319, DOI https://doi.org/10.1090/S0094-9000-05-00646-0
- V. V. Buldigīn, O. Ī. Klesov, and Ĭ. G. Shtaĭnebakh, The PRV property of functions and the asymptotic behavior of solutions of stochastic differential equations, Teor. Ĭmovīr. Mat. Stat. 72 (2005), 10–23 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist. 72 (2006), 11–25. MR 2168132, DOI https://doi.org/10.1090/S0094-9000-06-00660-0
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On some extensions of Karamata’s theory and their applications, Publ. Inst. Math. (Beograd) (N.S.) 80(94) (2006), 59–96. MR 2281907, DOI https://doi.org/10.2298/PIM0694059B
- Daren B. H. Cline, Intermediate regular and $\Pi $ variation, Proc. London Math. Soc. (3) 68 (1994), no. 3, 594–616. MR 1262310, DOI https://doi.org/10.1112/plms/s3-68.3.594
- Dragan Djurčić, $\scr O$-regularly varying functions and strong asymptotic equivalence, J. Math. Anal. Appl. 220 (1998), no. 2, 451–461. MR 1614959, DOI https://doi.org/10.1006/jmaa.1997.5807
- Dragan Djurčić and Aleksandar Torgašev, Strong asymptotic equivalence and inversion of functions in the class $K_c$, J. Math. Anal. Appl. 255 (2001), no. 2, 383–390. MR 1815787, DOI https://doi.org/10.1006/jmaa.2000.7083
- D. Drasin and E. Seneta, A generalization of slowly varying functions, Proc. Amer. Math. Soc. 96 (1986), no. 3, 470–472. MR 822442, DOI https://doi.org/10.1090/S0002-9939-1986-0822442-5
- William Feller, One-sided analogues of Karamata’s regular variation, Enseign. Math. (2) 15 (1969), 107–121. MR 254905
- I. V. Grinevich and Yu. S. Khokhlov, Domains of attraction of semistable laws, Teor. Veroyatnost. i Primenen. 40 (1995), no. 2, 417–422 (Russian, with Russian summary); English transl., Theory Probab. Appl. 40 (1995), no. 2, 361–366 (1996). MR 1346477, DOI https://doi.org/10.1137/1140038
- Allan Gut, Oleg Klesov, and Josef Steinebach, Equivalences in strong limit theorems for renewal counting processes, Statist. Probab. Lett. 35 (1997), no. 4, 381–394. MR 1483025, DOI https://doi.org/10.1016/S0167-7152%2897%2900036-9
- L. de Haan and U. Stadtmüller, Dominated variation and related concepts and Tauberian theorems for Laplace transforms, J. Math. Anal. Appl. 108 (1985), no. 2, 344–365. MR 793651, DOI https://doi.org/10.1016/0022-247X%2885%2990030-7
- J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38–53.
- J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc. Math. France 61 (1933), 55–62 (French). MR 1504998
- J. Karamata, Bemerkung über die vorstehende Arbeit des Herrn Avakumović, mit näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen, Bull. Int. Acad. Youg. Sci. 29–30 (1936), 117–123.
- Oleg Klesov, Zdzisław Rychlik, and Josef Steinebach, Strong limit theorems for general renewal processes, Probab. Math. Statist. 21 (2001), no. 2, Acta Univ. Wratislav. No. 2328, 329–349. MR 1911442
- B. I. Korenblyum, On the asymptotic behavior of Laplace integrals near the boundary of a region of convergence, Dokl. Akad. Nauk SSSR (N.S.) 104 (1955), 173–176. MR 0074550
- W. Matuszewska, On a generalization of regularly increasing functions, Studia Math. 24 (1964), 271–279. MR 167574, DOI https://doi.org/10.4064/sm-24-3-271-279
- W. Matuszewska and W. Orlicz, On some classes of functions with regard to their orders of growth, Studia Math. 26 (1965), 11–24. MR 190273, DOI https://doi.org/10.4064/sm-26-1-11-24
- Sidney I. Resnick, Extreme values, regular variation, and point processes, Applied Probability. A Series of the Applied Probability Trust, vol. 4, Springer-Verlag, New York, 1987. MR 900810
- B. A. Rogozin, A Tauberian theorem for increasing functions of dominated variation, Sibirsk. Mat. Zh. 43 (2002), no. 2, 442–445, iii (Russian, with Russian summary); English transl., Siberian Math. J. 43 (2002), no. 2, 353–356. MR 1902831, DOI https://doi.org/10.1023/A%3A1014757424289
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
- U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms, J. Reine Angew. Math. 311(312) (1979), 283–290. MR 549970, DOI https://doi.org/10.1016/0022-247X%2882%2990260-8
- U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms in dimension $D>1$, J. Reine Angew. Math. 323 (1981), 127–138. MR 611447, DOI https://doi.org/10.1515/crll.1981.328.72
- A. L. Yakymiv, Asymptotic properties of state change points in a random record process, Teor. Veroyatnost. i Primenen. 31 (1986), no. 3, 577–581 (Russian). MR 866880
- A. L. Yakymiv, Asymptotics of the probability of nonextinction of critical Bellman-Harris branching processes, Trudy Mat. Inst. Steklov. 177 (1986), 177–205, 209 (Russian). Proc. Steklov Inst. Math. 1988, no. 4, 189–217; Probabilistic problems of discrete mathematics. MR 840684
References
- S. Aljančić and D. Arandelović, $O$-regularly varying functions, Publ. Inst. Math. (Beograd) (N.S.) 22 (36) (1977), 5–22. MR 0466438 (57:6317)
- V. G. Avakumović, Über einen O-Inversionssatz, Bull. Int. Acad. Youg. Sci. 29–30 (1936), 107–117.
- N. K. Bari and S. B. Stechkin, Best approximation and differential properties of two conjugate functions, Trudy Mosk. Mat. Obsch. 5 (1956), 483–522. (Russian) MR 0080797 (18:303e)
- S. M. Berman, Sojourns and extremes of a diffusion process on a fixed interval, Adv. Appl. Prob. 14 (1982), 811–832. MR 677558 (84d:60113)
- S. M. Berman, The tail of the convolution of densities and its application to a model of HIV-latency time, Ann. Appl. Prob. 2 (1992), 481–502. MR 1161063 (94b:60020)
- N. H. Bingham and C. M. Goldie, Extensions of regular variation, I, II, Proc. London. Math. Soc. 44 (1982), 473–534. MR 656246 (83m:26004a)
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. MR 898871 (88i:26004)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukrain. Math. J. 54 (2002), 179–206. MR 1952816 (2003i:60044)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On factorization representations for Avakumović–Karamata functions with nondegenerate groups of regular points, Anal. Math. 30 (2004), 161–192. MR 2093756 (2005f:26029)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On some properties of asymptotically quasi-inverse functions and their applications I, Teor. Imov. Mat. Stat. 70 (2004), 9–25; English transl. in Theory Probab. Math. Statist. 70 (2005), 11–28. MR 2109819 (2005i:26005)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On some properties of asymptotically quasi-inverse functions and their applications II, Teor. Imov. Mat. Stat. 71 (2004), 34–48; English transl. in Theory Probab. Math. Statist. 71 (2005), 37–52. MR 2144319 (2006d:26002)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, The PRV property of functions and the asymptotic behavior of solutions of stochastic differential equations, Teor. Imov. Mat. Stat. 72 (2005), 10–23; English transl. in Theory Probab. Math. Statist. 72 (2006), 11–25. MR 2168132 (2006e:60079)
- V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On some extensions of Karamata’s theory and their applications, Publ. Inst. Math. (Beograd) (N.S.) 80(94) (2006), 59–96. MR 2281907 (2007j:26001)
- D. B. H. Cline, Intermediate regular and $\Pi$-variation, Proc. London Math. Soc. 68 (1994), 594–616. MR 1262310 (95c:26001)
- D. Djurčić, $O$-regularly varying functions and strong asymptotic equivalence, J. Math. Anal. Appl. 220 (1998), 451–461. MR 1614959 (99c:26002)
- D. Djurčić and A. Torgašev, Strong asymptotic equivalence and inversion of functions in the class $K_c$, J. Math. Anal. Appl. 255 (2001), 383–390. MR 1815787 (2001m:26005)
- D. Drasin and E. Seneta, A generalization of slowly varying functions, Proc. Amer. Math. Soc. 96 (1986), no. 3, 470–472. MR 822442 (87d:26002)
- W. Feller, One-sided analogues of Karamata’s regular variation, L’Enseignement Math. 15 (1969), 107–121. MR 0254905 (40:8112)
- I. V. Grinevich and Yu. S. Khokhlov, The domains of attraction of semistable laws, Teor. Veroyatnost. Primenen. 40 (1995), no. 2, 417–422; English transl. in Theory Probab. Appl. 40 (1995), no. 2, 361–366. MR 1346477 (96k:60035)
- A. Gut, O. Klesov, and J. Steinebach, Equivalences in strong limit theorems for renewal counting processes, Statist. Probab. Lett. 35 (1997), 381–394. MR 1483025 (98m:60043)
- L. de Haan and U. Stadtmüller, Dominated variation and related concepts and Tauberian theorems for Laplace transformations, J. Math. Anal. Appl. 108 (1985), 344–365. MR 793651 (86k:44002)
- J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38–53.
- J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamenteaux, Bull. Soc. Math. France 61 (1933), 55–62. MR 1504998
- J. Karamata, Bemerkung über die vorstehende Arbeit des Herrn Avakumović, mit näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen, Bull. Int. Acad. Youg. Sci. 29–30 (1936), 117–123.
- O. Klesov, Z. Rychlik, and J. Steinebach, Strong limit theorems for general renewal processes, Theory Probab. Math. Statist. 21 (2001), 329–349. MR 1911442 (2003j:60120)
- B. H. Korenblyum, On the asymptotic behaviour of Laplace integrals near the boundary of a region of convergence, Dokl. Akad. Nauk. USSR (N.S.) 104 (1956), 173–176. MR 0074550 (17:605a)
- W. Matuszewska, On a generalization of regularly increasing functions, Studia Math. 24 (1964), 271–279. MR 0167574 (29:4846)
- W. Matuszewska and W. Orlicz, On some classes of functions with regard to their orders of growth, Studia Math. 26 (1965), 11–24. MR 0190273 (32:7686)
- S. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, 1987. MR 900810 (89b:60241)
- B. A. Rogozin, A Tauberian theorem for increasing functions of dominated variation, Sibirsk. Matem. Zh. 43 (2002), 442–445; English transl. in Siberian Math. J. 43 (2002), 353–356. MR 1902831 (2003f:40010)
- E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin, 1976. MR 0453936 (56:12189)
- U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms, J. Reine Angew. Math. 311/312 (1979), 283–290. MR 549970 (81f:44006)
- U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms in dimension $D>1$, J. Reine Angew. Math. 323 (1981), 127–138. MR 611447 (82i:44001)
- A. L. Yakymiv, Asymptotics properties of the state change points in a random record process, Teor. Veroyatnost. Primenen. 31 (1986), 577–581; English transl. in Theory Probab. Appl. 31 (1987), 508–512. MR 866880 (88b:60093)
- A. L. Yakymiv, Asymptotics of the probability of nonextinction of critical Bellman–Harris branching processes, Proc. Steklov Inst. Math. 4 (1988), 189–217. MR 0840684 (88d:60221)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
26A12,
26A48
Retrieve articles in all journals
with MSC (2000):
26A12,
26A48
Additional Information
V. V. Buldygin
Affiliation:
Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056, Ukraine
Email:
valbuld@comsys.ntu-kpi.kiev.ua
O. I. Klesov
Affiliation:
Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056, Ukraine
Email:
klesov@math.uni-paderborn.de
J. G. Steinebach
Affiliation:
Universität zu Köln, Mathematisches Institut, Weyertal 86–90, D–50931 Köln, Germany
Email:
jost@math.uni-koeln.de
Received by editor(s):
December 25, 2006
Published electronically:
January 14, 2009
Additional Notes:
This work was partially supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-3 and 436 UKR 113/68/0-1
Article copyright:
© Copyright 2009
American Mathematical Society