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ON PRICING CONTINGENT CLAIMS IN A TWO INTEREST RATES
JUMP-DIFFUSION MODEL VIA MARKET COMPLETIONS
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S. KANE AND A. MELNIKOV

Abstract. This paper deals with the problem of hedging contingent claims in the
framework of a two factors jump-diffusion model with different credit and deposit
rates. The upper and lower hedging prices are derived for European options by
means of auxiliary completions of the initial market.

1. Introduction

In well-known financial market models one considers a unique interest rate for both
deposit and credit (see for instance the books by Elliott and Kopp [10], Karatzas and
Shreve [12]). In reality, the credit rate is always higher than the deposit rate. Such
a market constraint brings new difficulties in the problem of hedging contingent claims
(see Bergman [4], Korn [13], Bart [3], and also Cvitanic and Karatzas [8], Cvitanić [6, 7],
Föllmer and Kramkov [11], Karatzas and Shreve [12], Cvitanić, Pham, and Touzi [9],
Soner and Touzi [18] regarding other market constraints).

In contrast with complete markets, there is no symmetry between seller and buyer
positions in the case of a market with constraints. The fair price of the derivative security
(option) is split to the upper and lower prices. Hence, the problem of hedging a given
contingent claim is to find these prices. We consider the problem in a jump-diffusion
setting and derive the formulas for the above prices in terms of parameters of the initial
model.

We give an extension of the methodology of completions in a two interest rates jump-
diffusion financial market and show how our results are applied in the Black–Scholes
model (see Korn [13]) and in the Merton model (Merton [17]).

2. Description of the model and auxiliary results

Let {Ω,F , F = (Ft)t≥0, P} be a standard stochastic basis. Suppose there are two risky
assets Si, i = 1, 2, whose prices are described by the equations

(2.1) dSi
t = Si

t−
(
µi dt + σi dWt − νi dΠt

)
, i = 1, 2.

Here W is a standard Wiener process and Π is a Poisson process with positive intensity λ.
The filtration F is generated by the independent processes W and Π, µi ∈ R, σi > 0,
νi < 1.
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58 S. KANE AND A. MELNIKOV

We also assume that there are a deposit account B1 and a credit account B2 satisfying

dBi
t = Bi

tr
i dt, i = 1, 2.(2.2)

Denote by (B1, B2, S1, S2) the market described by the above assets. Any non-negative
FT -measurable random variable fT is called a contingent claim with the maturity time T .
In the (B1, B2, S1, S2)-market, a portfolio π = (β1, β2, γ1, γ2) is an Ft-predictable pro-
cess, where we denote respectively by βi and γi the number of units of the ith bond
and ith stock in the wealth. The value of the portfolio π is given by

(2.3) Vt = β1
t B1

t + β2
t B2

t + γ1
t S1

t + γ2
t S2

t a.s.

A portfolio π is called self-financing (SF) if it has the following property:

(2.4) dVt = β1
t dB1

t + β2
t dB2

t + γ1
t dS1

t + γ2
t dS2

t a.s.

Such a portfolio will be called admissible if

Vt ≥ 0 a.s. for all t ≥ 0.

The set of admissible portfolios with initial capital x is denoted by A(x).
The seller has the obligation to deliver the claim fT at maturity, and in return he

receives an initial amount x. The amount x will grow to XT (x) ≥ fT . The buyer is
borrowing the initial amount −y, y < 0, which grows to YT (y) ≥ −fT (at maturity, he
receives the claim fT and pays his debt YT ). The seller and the buyer positions can
be identified with the wealth process Xt ≥ 0 and the debt process Yt ≤ 0 respectively.
Moreover, the processes X and −Y are the capitals of self-financing and admissible
portfolios. Under the above conditions and (2.1)–(2.2) the wealth process Xt and the
debt process Yt have the form

dXt = Xt−

[(
1 − α1

t − α2
t

)+
r1 dt −

(
1 − α1

t − α2
t

)−
r2 dt + α1

t

dS1
t

S1
t−

+ α2
t

dS2
t

S2
t−

]
,(2.5)

dYt = Yt−

[(
1 − α1

t − α2
t

)+
r2 dt −

(
1 − α1

t − α2
t

)−
r1 dt + α1

t

dS1
t

S1
t−

+ α2
t

dS2
t

S2
t−

]
.(2.6)

Here αi
t = γi

tS
i
t−/Xi

t− (resp. γi
tS

i
t−/Y i

t−), i = 1, 2, is the proportion of cash invested on
the ith stock in the wealth process (resp. debt process), and

a+ = max{0, a}, a− = −min{0, a}.

Note that throughout the paper α will be also called a strategy.
In this paper, a portfolio π with initial capital x is called a hedge for the seller if the

corresponding wealth process satisfies Xx,π
T ≥ fT P-a.s. Similarly a portfolio π is a hedge

for the buyer if the debt process is such that Y y,π
T ≥ −fT P-a.s.

For the seller, we say that a hedge π∗ is minimal if Xπ
t ≥ Xπ∗

t P-a.s., for all t and for
any other hedge π. For the buyer, a hedge π′ is minimal if Y π

t ≥ Y π′

t P-a.s., for all t and
for any other hedge π.

Let us consider the special case where the financial market has the same deposit and
credit rates: r1 = r2 = r, and hence, B1 = B2 = B. In the framework of such a
(B, S1, S2)-market, the capital (resp. debt) generated by an admissible portfolio process
π := (β, γ1, γ2) is described as follows:

Xt = βtBt + γ1
t S1

t + γ2
t S2

t a.s.,(2.7)

dXt

Xt−
=

dYt

Yt−
=

[(
1 − α1

t − α2
t

)
r dt + α1

t

dS1
t

S1
t−

+ α2
t

dS2
t

S2
t−

]
.(2.8)
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If σ1ν2 �= σ2ν1, then the parameters

(2.9)
φ = −

(
µ1 − r

)
ν2 −

(
µ2 − r

)
ν1

σ1ν2 − σ2ν1
,

ψ =

(
µ1 − r

)
σ2 −

(
µ2 − r

)
σ1

σ2ν1 − σ1ν2
λ−1 − 1

define (see Melnikov et al. [15]) a density Z of a unique martingale measure P ∗ in the
(B, S1, S2)-market as a stochastic exponent

(2.10) Zt = Et(N) = exp
{

φWt −
φ2

2
t + (λ − λ∗)t + (lnλ∗ − ln λ)Πt

}
,

where Nt = φWt + ψ(Πt − λt). Under such a measure, the given Poisson process Π has
intensity λ∗ = λ(1 + ψ), and W ∗

t = Wt − φt is a Wiener process.
We consider contingent claims of the form fT := f(S1

T ).
It is well known that the fair price of the call option (S1

T − K)+ in this (B, S1, S2)-
market is given by the formula
(2.11)

E∗e−rT (S1
T − K)+ =

∞∑
n=0

(
e−λ∗T (λ∗T )n

n!
CBS

[
S1

0

(
1 − ν1

)n
eν1λ∗T , r, σ1, K, T

])
= Cr(0),

where E∗ is the expected value under the risk neutral measure, and

CBS(x, r, σ, K, T ) = xΦ(d1) − Ke−rT Φ(d2),

d1 =
ln(x/K) + T

(
r + σ2/2

)
σ
√

T
, d2 = d1 − σ

√
T ,

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt.

(See Aase [1], Bardhan and Chao [2], Colwell and Elliott [5], Mercurio and Rung-
galdier [16], Melnikov et al. [15].) We derive the well-known price of a put option from
the call-put parity.

The next lemma studies the monotonic properties of Cr (see (2.11)) as a function of r.

Lemma 2.1. If the following inequalities are fulfilled:
2.1) ∂λ∗/∂r ≥ 0, or
2.2) ∂λ∗/∂r ≤ 0 and ν1 ≥ 0, or
2.3) ∂λ∗/∂r ≤ 0, ν1 ≤ 0 and

ν1 ∂λ∗

∂r

1 + ν1 ∂λ∗

∂r

≤ Φ(d2(0)),

then ρC := ∂C/∂r is positive.
If the next inequalities are satisfied:
2.1′) ∂λ∗/∂r ≤ 0, or
2.2′) ∂λ∗/∂r ≥ 0 and ν1 ≤ 0, or
2.3′) ∂λ∗/∂r ≥ 0, ν1 ≥ 0 and

Φ(d2(0)) ≤ 1
1 + ν1 ∂λ∗

∂r

,

then ρP := ∂P/∂r is negative.
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The proof of this lemma is provided in the Appendix.
Let us now turn to the (B1, B2, S1, S2)-market.

3. Main results and pricing formulas

To study the hedging problem in the framework of (B1, B2, S1, S2)-market we define
a variety of (B, S1, S2) (or (Bd, S1, S2))-markets with the interest rates r = rd = r1 + d,
where d = (dt) is a predictable process such that dt ∈ [0, r2 − r1]. Consider first the
position of a seller. From his/her viewpoint, the investor wishes to find the minimal
initial amount possible to invest in generating a wealth process matching at least fT .
Such a price is provided by the initial capital of the minimal hedge (if it exists) against
the claim fT . In the (B1, B2, S1, S2)-market, the upper hedging price (or seller price)
will be given by the following Statement (see Korn [13] for the Black–Scholes model).

Statement 3.1. Let d = (dt) be a predictable process with values in the interval[
0, r2 − r1

]
.

Assume that αd := (α1, α2), the optimal hedging strategy against the claim fT in the
(Bd, S1, S2)-market, satisfies the condition

(3.1)
(
r2 − r1 − dt

) (
1 − α1

t − α2
t

)−
+ dt

(
1 − α1

t − α2
t

)+
= 0.

Then Crd(0) (resp. Prd(0)), the initial price of the minimal hedge in (Bd, S1, S2) against
fT , is equal to C+ (resp. P+), the initial price of the minimal hedging strategy in(

B1, B2, S1, S2
)
.

Namely
Crd(0) = C+ (resp. Prd(0) = P+).

Before giving the proof of this statement, we show that the set of solutions of the
equation (3.1) is non-empty at least for the European put and call options.

Example. Let fT = (S1
T − K)+; the European call price (2.11) can be expressed as

follows:

Crd(t) = S1
t

(
1 − ν1

)n
eν1λ∗(T−t)

( ∞∑
0

(λ∗(T − t))n

n!
e−λ∗(T−t)Φ(d1)

)

− Ke−rd(T−t)

( ∞∑
0

(λ∗(T − t))n

n!
e−λ∗(T−t)Φ(d2)

)
.

For any time t the seller borrows money: 1 − α1
t − α2

t < 0. In the 1st term of Crd the
coefficient of S1 is the number of units of stock needed, the 2nd term, always non-positive
(assume it is negative), is invested in a bank account. Taking the latter into account
((1 − α1

t − α2
t )

+ = 0) in relation (3.1) yields to(
r2 − r1 − dt

) (
1 − α1 − α2

)−
= 0.

Since (1−α1 −α2)− > 0, we derive (r2 − r1 − dt) = 0. Hence r2 − r1 = dt, and the pair
(r2 − r1, αr2−r1) satisfies the relation (3.1).

Proof of Statement 3.1. Let us first show that under relation (3.1), the minimal hedging
strategy (α) in the (Bd, S1, S2)-market is a hedging strategy in the (B1, B2, S1, S2)-
market. Let Crd be the initial capital associated to that hedge in the (Bd, S1, S2)-market.
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If α satisfies (3.1), then we rewrite the latter equation as follows:(
r2 − r1 − dt

) (
1 − α1

t − α2
t

)−
+ dt

(
1 − α1

t − α2
t

)+

= r2
(
1 − α1

t − α2
t

)− −
(
r1 + dt

) (
1 − α1

t − α2
t

)−
+ dt

(
1 − α1

t − α2
t

)+

= r2
(
1 − α1

t − α2
t

)− − rd
(
1 − α1

t − α2
t

)
− r1

(
1 − α1

t − α2
t

)+

= 0.

Hence,

rd
(
1 − α1

t − α2
t

)
= r1

(
1 − α1

t − α2
t

)+ − r2
(
1 − α1

t − α2
t

)−
and

dXα,d
t

Xα,d
t−

= rd
(
1 − α1

t − α2
t

)
dt + α1

t

dS1
t

S1
t−

+ α2 dS2
t

S2
t−

=
(
r1(1 − α1

t − α2
t )

+ − r2(1 − α1
t − α2

t )
−)

dt + α1 dS1
t

S1
t−

+ α2 dS2
t

S2
t−

=
dXα

t

Xα
t−

.

Therefore, the wealth processes Xα,d
t (Crd) and Xα

t (Crd) on the (Bd, S1, S2)- and
(B1, B2, S1, S2)-markets, respectively, coincide, and in particular

Xα,d
T (Crd) = Xα

T (Crd) = f(S1
T ).

Hence, the minimal hedge α in the (Bd, S1, S2)-market against fT is a hedge in the
(B1, B2, S1, S2)-market when relation (3.1) holds.

We now show that the above strategy α with initial capital Crd is minimal among the
hedges against f(S1

T ) in the (B1, B2, S1, S2)-market. For that purpose, we will show that
in the (B1, B2, S1, S2)-market, the initial capital of an arbitrary strategy (αa) hedging fT

is greater than or equal to the initial capital of the minimal hedge α (Crd):

Crd := Ed,∗
[
f(S1

T )e−rdT
]
≤ x,

where Ed,∗ is the expected value under the martingale measure P d,∗ (see relation (2.10))
in the (Bd, S1, S2)-market, and x represents the initial capital of αa, an arbitrary strategy
in the (B1, B2, S1, S2) − market.

Let Xαa

t be the wealth process generated by αa in the (B1, B2, S1, S2)-market. We
will prove that Ed,∗[fT e−rdT

]
≤ Ed,∗[Xαa

T e−rdT
]
≤ x.

Consider the discounted wealth process X̃t := Xαa

t e−rdt; then by using Itô’s formula
we obtain

dX̃t = −rde−rdtXαa

t− dt + e−rdt dXαa

t = e−rdtXαa

t−

[
dXαa

t

Xαa

t−
− rd dt

]
= e−rdtXαa

t−

[((
1 − α1,a

t − α2,a
t

)+

r1 − (1 − α1,a
t − α2,a

t )−r2 − rd

)
dt

+ α1,a
t

dS1
t

S1
t−

+ α2,a
t

dS2
t

S2
t−

]
.

Note that from the construction of the martingale measure (see Melnikov et al. [15]),
W d,∗

t = W d
t −φt is a P d,∗-Wiener process, and (Πt−λ∗t) is a P d,∗-martingale. Therefore
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we can rewrite the dynamics of the stocks as follows:

dS1
t−

S1
t−

= rd dt + σ1 dW d,∗ − ν1 d(Πt − λ∗t),

dS2
t−

S2
t−

= rd dt + σ2 dW d,∗ − ν2 d(Πt − λ∗t),

and

dX̃t = e−rdtXαa

t−

[((
1 − α1,a

t − α2,a
t

)+

r1 −
(
1 − α1,a

t − α2,a
t

)−
r2

−
(
1 − α1,a

t − α2,a
t

)
rd

)
dt

+ α1,a
t

(
σ1 dW d,∗ − ν1 d(Πt − λ∗t)

)
+ α2,a

t

(
σ2 dW d,∗ − ν2 d(Πt − λ∗t)

)]
.

Since rd = r1 + d, it follows that

(3.2)
dX̃t = Xαa

t− e−rdt

[((
1 − α1,a

t − α2,a
t

)− (
r1 − r2

)
− d

(
1 − α1,a

t − α2,a
t

))
dt

+
(
α1,a

t σ1 + α2,a
t σ2

)
dW d,∗

t −
(
α1,a

t ν1 + α2,a
t ν2

)
d(Πt − λ∗t)

]
.

Now, notice that∫ t

0

Xαa

u−e−rdu
((

1 − α1,a
u − α2,a

u

)− (
r1 − r2

)
− d

(
1 − α1,a

u − α2,a
u

))
du ≤ 0,

and ∫ t

0

Xαa

u−e−rdu
(
α1,a

u σ1 + α2,a
u σ2

)
dW d,∗

u −
(
α1,a

u ν1 + α2,a
u ν2

)
d(Πu − λ∗u)

is a P d,∗-local martingale. Without loss of generality we assume the latter is a P d,∗-
martingale. Whence upon first integrating the relation (3.2) and then taking the P d,∗-
expectation, we obtain, for all t in [0, T ],

(3.3) Ed,∗[X̃t] = Ed,∗[Xαa

t e−rdt] ≤ x.

The strategy αa is a hedge for fT and yields to Xαa

T e−rdT = X̃T ≥ fT e−rdT , henceforth

Crd = Ed,∗
[
fT e−rdT

]
≤ Ed,∗

[
Xαa

T e−rdT
]
≤ x,

where x is the initial capital of an arbitrary hedge for fT in the (B1, B2, S1, S2)-market.
Further, provided relation (3.1) is fulfilled, Crd is an initial price of a hedge for fT in
the latter market. Therefore, Crd = C+, where C+ is the initial capital of the minimal
hedge in the (B1, B2, S1, S2)-market.

The proof is similar for the put case; hence Prd = P+. �

Secondly, we study the position of a buyer in the following statement.

Statement 3.2. Let d = (dt) be a predictable process in [0, r2−r1], and assume that αd,
the minimal hedging strategy against fT in the (Bd, S1, S2)-market satisfies the equation

(3.4)
(
r2 − r1 − dt

) (
1 − α1

t − α2
t

)+
+ dt

(
1 − α1

t − α2
t

)−
= 0.

Then
(1) the strategy αd is a hedge against −fT in (B1, B2, S1, S2);
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(2) furthermore, αd provides the minimal hedge against −fT in the (B1, B2, S1, S2)-
market.

In order to proof Statement 3.2, we first state the following lemma.

Lemma 3.3. The minimal hedging strategy (for a seller) against fT in (Bd, S1, S2) is
the minimal hedging strategy (for a buyer) against −fT in the same market.

Proof. In the unconstrained (Bd, S1, S2)-market, the stochastic differential equations of
the debt and wealth process generated by a strategy α satisfy (see (2.8))

dXα
t

Xα
t−

=
dY α

t

Y α
t−

.

If αd is a hedge (for the seller) against fT in (Bd, S1, S2), then Xαd,x
T = fT . Now, taking

y = −x as the initial price for the debt process yields to

Y αd,y
T = −Xαd,x

T = −fT .

Henceforth, αd is a hedge against −fT in (Bd, S1, S2) (see hedge for a buyer). �
Proof of Statement 3.2. Let α, the minimal hedge against −fT in the (Bd, S1, S2)-mar-
ket, with initial debt −Crd , satisfy the relation (3.4).

We rewrite the relation (3.4) as follows:(
r2 − r1 − d

) (
1 − α1 − α2

)+
+ d

(
1 − α1 − α2

)
= r2

(
1 − α1 − α2

)+ − rd
(
1 − α1 − α2

)
− r1

(
1 − α1 − α2

)−
= 0,

rd
(
1 − α1 − α2

)
= r2

(
1 − α1 − α2

)+ − r1
(
1 − α1 − α2

)−
.

Denote by Y d and Y the debt processes generated by α in the (Bd, S1, S2)- and
(B1, B2, S1, S2)-markets, respectively; then

dY d
t

Y d
t−

=
dYt

Yt−
.

From the above equality, taking −Crd as initial price yields to α being a hedge against
−fT in the (B1, B2, S1, S2)-market.

To prove the minimality of the above strategy, we consider an arbitrary strategy αa

with initial debt process y, let Y αa

t be the debt process generated by αa, and denote
Ỹ αa

t = e−rdtY αa

t . Using Itô’s formula we derive

d
(
Ỹ αa

t

)
= Y αa

t− e−rdt

(
−rd dt +

dY αa

t

Y αa

t−

)
,

dỸ αa

t = e−rdtY αa

t−

[((
1 − α1,a

t − α2,a
t

)+

r2 −
(
1 − α1,a

t − α2,a
t

)−
r1

−
(
1 − α1,a

t − α2,a
t

)
rd

)
dt

+ α1,a
t

(
σ1 dW d,∗ − ν1 d(Πt − λ∗t)

)
+ α2,a

t

(
σ2 dW d,∗ − ν2 d(Πt − λ∗t)

)]
.

(3.5)

Notice that from the drift term((
1 − α1,a

t − α2,a
t

)+

r2 −
(
1 − α1,a

t − α2,a
t

)−
r1 −

(
1 − α1,a

t − α2,a
t

)
rd

)
=

((
1 − α1,a

t − α2,a
t

)+ (
r2 − rd

)
−

(
1 − α1,a

t − α2,a
t

)− (
r1 − rd

))
≥ 0.
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Hence,

(3.6)

∫ t

0

e−rduY αa

u−

((
1 − α1,a

u − α2,a
u

)+ (
r2 − rd

)
−

(
1 − α1,a

u − α2,a
u

)− (
r1 − rd

))
du ≤ 0.

Further, we can assume without loss of generality that∫ t

0

e−rduY αa

u−
(
α1,a

u

(
σ1 dW d,∗

u − ν1 d(Πu − λ∗u)
)

+ α2,a
u

(
σ2 dW d,∗

u − ν2 d(Πu − λ∗u)
))

is a P d,∗-martingale. Consequently

(3.7)

∫ T

0

dỸ αa

u ≤
∫ T

0

e−rduY αa

u−

(
α1,a

u

(
σ1 dW d,∗

u − ν1 d(Πu − λ∗u)
)

+ α2,a
u

(
σ2 dW d,∗

u − ν2 d(Πu − λ∗u)
))

.

Since αa is a hedge, it follows that Y αa

T ≥ −fT , and we derive

−Cd = Ed,∗
[
e−rdT (−fT )

]
≤ Ed,∗

[
Ỹ αa

T

]
,

from the relations (3.5), (3.6), and (3.7)

Ed,∗
[
Ỹ αa

T

]
= Ed,∗

[
Y αa

T e−rdT
]
≤ y.

Hence −Cd ≤ y for any arbitrary strategy with initial debt y. Since the pair (α,−Cd) is
a hedge against −fT in the (B1, B2, S1, S2)-market, it provides the minimal hedge.

The proof holds for both put and call options. �

Let us give an approximation of the arbitrage-free prices of the claim fT = (S1
T −K)+.

The key ingredient of the method relies on the following. Taking the supremum (resp.
infimum) over the auxiliary markets of the actual prices, we find some natural approxi-
mations for the upper and lower hedging prices of the claim, and hence we approximate
the arbitrage-free interval of prices by taking[

inf
d∈[0,r2−r1]

Crd , sup
d∈[0,r2−r1]

Crd

]
.

Exploiting the call-put parity, a similar method is used for fT = (K − S1
T )+.

We have considered auxiliary markets of the form (Bd, S1, S2) with constant d and
therefore with constant interest rates rd = r1 + d.

To formulate our pricing results we introduce the following conditions derived from
Lemma 2.1:

(I) ν1∂λ∗/∂r ≤ 0;
(II) ν1 ≥ 0 and ∂λ∗/∂r ≥ 0 and

Φ(d2(0)) ≤ 1
1 + ν1 ∂λ∗

∂r

;

(III) ν1 ≤ 0 and ∂λ∗/∂r ≤ 0 and

ν1 ∂λ∗

∂r

1 + ν1 ∂λ∗

∂r

≤ Φ(d2(0)).

Under these conditions, combining Lemma 2.1, Statement 3.1, and Statement 3.2, we
arrive at the following theorem.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PRICING CONTINGENT CLAIMS 65

Theorem 3.4. If condition (I) or (II) or (III) is fulfilled, then the following pricing
formulas hold:

(3.8)

sup
d∈[0,r2−r1]

Crd ≥ sup
d∈[0,r2−r1], d is const.

Crd ≥ Cr2 ,

sup
d∈[0,r2−r1]

Prd ≥ sup
d∈[0,r2−r1], d is const.

Prd ≥ Pr1 ,

inf
d∈[0,r2−r1]

Crd ≤ inf
d∈[0,r2−r1], d is const.

Crd ≤ Cr1 ,

inf
d∈[0,r2−r1]

Prd ≤ inf
d∈[0,r2−r1], d is const.

Prd ≤ Pr2 .

Corollary 3.5 (See Korn [13]). The Black–Scholes model satisfies (3.8) since condi-
tions (I), (II) and (III) are fulfilled:

ν1 = 0, ν1 ∂λ∗

∂r
= 0

and 0 ≤ Φ(d2) ≤ 1.

Corollary 3.6. The pure jump case (the Merton model) satisfies (3.8) since condition (I)
holds:

ν1 ∂λ∗

∂r
= −1.

4. Appendix

Proof of Lemma 2.1. a) The case of a call option. For convenience we will use a dif-
ferent representation of ∂C/∂r depending on whether ∂λ∗/∂r is positive or negative.
Differentiating (2.11) yields to

∂C

∂r
= T

∂λ∗

∂r

∑
n≥0

(λ∗T )n

n!
e−λ∗T A(n)

+ KTe−rT
∑
n≥0

(λ∗T )n

n!
e−λ∗T Φ(d2(n)) if

∂λ∗

∂r
≥ 0,

(4.1)

and

∂C

∂r
= T

∂λ∗

∂r

(
1 − ν1

) ∑
n≥0

(λ∗T )n

n!
e−λ∗T B(n)

− νT
∂λ∗

∂r
Ke−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
Φ(d2(n + 1)) − Φ(d2(n))

)
+ KTe−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T Φ(d2(n)) if

∂λ∗

∂r
≤ 0,

(4.2)

where A(n) and B(n) have the following expressions:

A(n) = S0

(
1 − ν1

)n+1
eν1λ∗T

(
Φ(d1(n + 1)) − Φ(d1(n))

)
− Ke−rT

(
Φ(d2(n + 1)) − Φ(d2(n))

)
,

B(n) = S0

(
1 − ν1

)n
eν1λ∗T

(
Φ(d1(n + 1)) − Φ(d1(n))

)
− Ke−rT

(
Φ(d2(n + 1)) − Φ(d2(n))

)
;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



66 S. KANE AND A. MELNIKOV

we denote σ1 by σ, and

d2(n) =
ln [S/K] + n ln

(
1 − ν1

)
+ ν1λ∗T +

(
r − σ2/2

)
T

σ
√

T
,

d1(n) = d2(n) + σ
√

T .

One can easily show that A(n) ≥ 0 and B(n) ≤ 0.
We only give the proof that A(n) ≥ 0, since a similar method can be used to show

that B(n) ≤ 0. We have

A(n) = S0

(
1 − ν1

)n+1
eν1λ∗T

(
Φ(d1(n+1))−Φ(d1(n))

)
−Ke−rT

(
Φ(d2(n+1))−Φ(d2(n))

)
,

where di(n + 1) = di(n) + ln(1 − ν)/(σ
√

T ), i = 1, 2, and

A(n) =
1√
2π

(
S0

(
1 − ν1

)n+1
eν1λ∗T

∫ d1(n+1)

d1(n)

e−x2/2 dx − Ke−rT

∫ d2(n+1)

d2(n)

e−x2/2 dx

)

=
1√
2π

(
S0

(
1 − ν1

)n+1
eν1λ∗T

∫ ln(1−ν1)
σ
√

T

0

e−(x+d1(n))2/2 dx

− Ke−rT

∫ ln(1−ν1)
σ
√

T

0

e−(x+d2(n))2/2 dx

)

=
1√
2π

∫ ln(1−ν1)
σ
√

T

0

(
S0

(
1 − ν1

)n+1
eν1λ∗T e−(x+d1(n))2/2 − Ke−rT e−(x+d2(n))2/2

)
dx

=
1√
2π

∫ ln(1−ν1)
σ
√

T

0

S0

(
1 − ν1

)n+1
eν1λ∗T e−(x+d1(n))2/2

(
1 − exσ

√
T

(1 − ν1)

)
dx.

If ln(1 − ν1) is negative then

1 − exσ
√

T

(1 − ν1)

is also negative. Hence, A(n) is positive. Similarly, if ln(1 − ν1) is positive then

1 − exσ
√

T

(1 − ν1)

is also positive. Hence, A(n) is always positive. Consequently:
1) For ∂λ∗/∂r ≥ 0, from the sign of A(n) and equation (4.1) we obtain ∂C/∂r > 0.
2) Similarly for ∂λ∗/∂r ≤ 0, since B(n) ≤ 0 and from equation (4.2), we only need to

find the sign of

(4.3)

− ν1T
∂λ∗

∂r
Ke−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
Φ(d2(n + 1)) − Φ(d2(n))

)
+ KTe−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T Φ(d2(n)).

Expression (4.3) can be transformed as

KTe−rt
∑
n≥0

(λ∗T )n

n!

(
Φ(d2(n))

(
1 + ν1 ∂λ∗

∂r

)
− ν1 ∂λ∗

∂r
Φ(d2(n + 1))

)
.(4.4)
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To guarantee the positivity of the above expression, it is sufficient to prove that

X =
(

Φ(d2(n))
(

1 + ν1 ∂λ∗

∂r

)
− ν1 ∂λ∗

∂r
Φ(d2(n + 1))

)
is positive.

Let us now consider two cases ν1 ≥ 0 or ν1 ≤ 0 and note that from the expression of
d2(n) the following always holds:

ν1
(
Φ(d2(n + 1)) − Φ(d2(n))

)
≤ 0.

(a) If ν1 ≤ 0, then from the previous relation, Φ is a non-decreasing function of n
and (1 + ν1∂λ∗/∂r) > 0; therefore(

Φ(d2(0))
(

1 + ν1 ∂λ∗

∂r

)
− ν1 ∂λ∗

∂r

)
< X.

Hence, if

Φ(d2(0)) ≥
ν1 ∂λ∗

∂r

1 + ν1 ∂λ∗

∂r

,

then X > 0 and ∂C/∂r > 0.
(b) If ν1 ≥ 0, then Φ is a non-increasing function of n, i.e., Φ(d2(n+1)) ≤ Φ(d2(n)),

and Φ(d2(n + 1)) < X. Therefore, X is non-negative and ∂C/∂r > 0.

b) The case of a put option. For the put option, ρ is given by the following:

(4.5)

∂P

∂r
= T

∂λ∗

∂r

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
S0

(
1 − ν1

)n+1
eν1λ∗T

(
Φ(d1(n + 1)) − Φ(d1(n))

)
− Ke−rT

(
Φ(d2(n + 1)) − Φ(d2(n))

))
− KTe−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
1 − Φ(d2(n))

)
if

∂λ∗

∂r
≤ 0,

and

(4.6)

∂P

∂r
= T

∂λ∗

∂r

(
1 − ν1

)
×

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
S0

(
1 − ν1

)n
eν1λ∗T

(
Φ(d1(n + 1)) − Φ(d1(n))

)
− Ke−rT

(
Φ(d2(n + 1)) − Φ(d2(n))

))
− ν1T

∂λ∗

∂r
Ke−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
Φ(d2(n + 1)) − Φ(d2(n))

)
− KTe−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
1 − Φ(d2(n))

)
if

∂λ∗

∂r
≥ 0.

1) If ∂λ∗/∂r ≤ 0, then from the sign of A(n) we get ∂P/∂r < 0.
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2) Now if ∂λ∗/∂r > 0, since B(n) ≤ 0 and (1 − ν1) > 0, the first term of ∂P/∂r is
negative. We only need to determine the sign of

(4.7)

− ν1T
∂λ∗

∂r
Ke−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
Φ(d2(n + 1)) − Φ(d2(n))

)
− KTe−rT

∑
n≥0

(λ∗T )n

n!
e−λ∗T

(
1 − Φ(d2(n))

)
.

As in the call case, we note that

ν1
(
Φ(d2(n + 1)) − Φ(d2(n))

)
≤ 0

and distinguish two cases ν1 ≥ 0 and ν1 ≤ 0. Again we consider the problem of finding
the sign of

(4.8) −ν1 ∂λ∗

∂r

(
Φ(d2(n + 1)) − Φ(d2(n))

)
−

(
1 − Φ(d2(n))

)
.

(a) For ν1 ≥ 0, we rewrite the expression (4.8) as

(4.9)
Y =

(
−ν1 ∂λ∗

∂r

(
Ψ(d2(n)) − Ψ(d2(n + 1))

)
−

(
Ψ(d2(n))

))
=

(
Ψ(d2(n))

(
−1 − ν1 ∂λ∗

∂r

)
+ ν1 ∂λ∗

∂r
Ψ(d2(n + 1))

)
,

where Φ = 1 − Ψ.
The above expression is negative if an upper bound of Y is negative. But, for

the same reason as in the call case (here Ψ is an increasing function of n),

Y <

(
Ψ(d2(0))

(
−1 − ν1 ∂λ∗

∂r

)
+ ν1 ∂λ∗

∂r

)
.

Hence for

Ψ(d2(0)) = 1 − Φ(d2(0)) >
ν1 ∂λ∗

∂r

1 + ν1 ∂λ∗

∂r
or

Φ(d2(0)) <
1

1 + ν1 ∂λ∗

∂r

∂P/∂r is negative.
(b) For ν1 ≤ 0 we note that Φ(d2(n)) (resp. Ψ (d2(n))) is a non-decreasing (resp.

non-increasing) function of n and

Y ≤ −Ψ(d2(n)).

Hence Y is negative and so is ∂P/∂r. �
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